

Greatland Gold plc (AIM: GGP) E: info@greatlandgold.com W: https://greatlandgold.com I twitter.com/greatlandgold

NEWS RELEASE | 20 April 2023

Rudall Exploration Results

High grade gold mineralisation intersected at depth

THIS ANNOUNCEMENT CONTAINS INSIDE INFORMATION AS STIPULATED UNDER THE UK MARKET ABUSE REGULATIONS. ON PUBLICATION OF THIS ANNOUNCEMENT VIA A REGULATORY INFORMATION SERVICE, THIS INFORMATION IS CONSIDERED TO BE IN THE PUBLIC DOMAIN.

Greatland Gold plc (AIM:GGP; Greatland or Company) is pleased to announce the results of its 2022 drilling programme at the 100%-owned Rudall project in the Paterson Province of Western Australia. The Ramses target is located within the Rudall tenement, 20km southeast of Greatland's flagship Havieron gold-copper project. The single drill hole testing the Ramses target was supported by a Western Australian Exploration Incentive Scheme (EIS) grant (see RNS Announcement titled "Greatland awarded a drilling grant for Paterson province exploration project" dated 10 May 2022).

Highlights

• Hole RAD002 intersected 18.25m @ 22.0g/t Au from 924m (uncut) to end of hole (EOH) at 942.25m, including 1m @ 393g/t

Au from 926m. Significantly, anomalous copper, silver, bismuth and arsenic assays were recorded within the broad, altered intersection

- The hole ended due to drilling limitations and mineralisation is open at depth
- Structural and geochemical work and a future downhole electromagnetic survey are required to refine the potential for mineralisation to extend into shallower positions within the system

Greatland Managing Director, Shaun Day, commented:

"Our recent drilling at Rudall has delivered a significant and high-grade result."

"While recognising the high-grade intercept is at depth, the strong gold mineralisation and supporting pathfinder geochemistry in consistently altered and veined basement sediments continues to highlight the outstanding prospectivity within Greatland's tenement package and the Paterson Province in general."

"These results, together with our continual improvement in understanding of the covered basement geology, stratigraphy and structure, increase our confidence in the prospectivity of the region, and our ability to vector towards intrusion related and other styles of mineralised systems on our extensive ground holdings."

Overview of the 2022 Rudall Programme

The Ramses target, within the Rudall project (Figure 1), was identified as a potential Havieron-style body from interpretation and re-modelling of regional airborne magnetic and gravity data. Following the granting of EIS funding for drill testing, a small, ground moving loop electromagnetic survey utilising an Abitibi-RMIT (**ARMIT**) sensor probe was completed prior to drilling in an attempt to detect a conductive body. Results were inconclusive due to the thickness of cover. To further refine the drill target, the magnetic anomaly was forward modelled by Adelaide Mining Geophysics (Figure 3). Modelling estimated cover to extend to a depth of between 300m and 700m over a 500m wide vertical roughly cylindrical body.

Diamond drill hole RAD002 was drilled to a depth of 942.25m to ensure success in penetrating through the cover into the Proterozoic basement and magnetic target zone.

 Table 1: 2022 Ramses target - drill hole collar data

Hole ID	Prospect	Hole Type	EOH (m)	GRID ID	Easting	Northing	RL	Dip	Azi
RAD002	Ramses	DD (MR/RC pre- collar)	942.25	MGA94_51	473375	7580303	245	-80	135

Figure 1: Paterson Province - Greatland tenements (including Greatland's Rudall tenement), aeromagnetic imagery and mineral occurrences

Figure 2: Ramses aeromagnetic target, ground electromagnetic grid and drilling on aeromagnetics.

Ramses Target

Drilling intersected the Permian Canning Basin sediment contact unconformity at a depth of 566m downhole (approximately 557m vertical). The underlying target Proterozoic Yeneena sedimentary stratigraphy consisted of generally sub-horizontally bedded, fine-grained sandstones interbedded with variably calcareous, silty sandstone to limestone rich sedimentary units.

A second, angular unconformity was noted within basement rocks at 924m downhole, where barren, sub-horizontally bedded, dark, fine-grained carbonaceous shaley siltstones overlay the pale green-brown, silica-carbonate-sericite altered and mineralised sandstone package (Figures 3 and 4). Bedding in the mineralised unit below 924m displays open folding with a maximum dip of 67° about an E-W fold axis, with a sub-vertical axial planar foliation. Two cross-cutting vein sets, the first dipping 21° towards the south and a steep set dipping $\sim 70^{\circ}$ towards 240° (SSW) were noted in the altered sandstones which appear linked to the gold mineralisation and alteration. The presence of iron oxide-stained sediments at such great depth indicates potential uplift and exposure to air and water at some earlier stage.

Table 2: RAD002 - significant assays

Hole	From	То	INT	Au (g/t)	Cu (ppm)	Ag (ppm)	As (ppm)	Bi (ppm)
RAD002	924	942.25	18.25	22.0	71			

	incl.	926	930	4	100	15			
	incl.	<i>926</i>	92 7	1	<u>393</u>	7.9	2.87	1	1.72
	Incl.	942	942.25	0.25	1.76	1,608	0.22	58.3	4.52

Note: Au Intersections at 0.1g/t Au COG with maximum 4m internal waste; Au grade uncut. If the peak Au grade of 393g/t Au is cut to 10g/t Au; the interval becomes 18.25m (a) 1.04g/t Au.

Figure 3: Schematic cross section 473400E looking east

The entire sandstone sequence below the interpreted unconformity was altered and mineralised, (Figure 4 and Table 2), including several narrow intervals of significantly anomalous multi-element pathfinder elements such as bismuth, arsenic, silver and copper (Appendix 1).

Subsequent laboratory screen fire assay check analyses for gold confirmed the single metre, high-grade assay and overall mineralised intersection tenor. No bias between the fine fraction and coarse fraction assays in the screen fire results was noted, giving a high degree of confidence in the initial results.

Figure 4:RAD002 - Angular unconformity, breccia - quartz vein contact at 924m; into the mineralised and oxidised calc-arenite sedimentary sequence

Next Steps

The presence of steep dipping veining within the mineralised zone increases the potential that the mineralisation extends to the top of the basement at approximately ~550m below surface. For context, the Havieron deposit occurs at ~420m below surface.

To test this, further structural and geochemical work along with a downhole electromagnetic survey of hole RAD002 to identify any off-hole conductors, will refine the potential for the mineralisation to extend to a shallower position within the basement.

Contact

For further information, please contact:

Greatland Gold plc Shaun Day, Managing Director | info@greatlandgold.com

Nominated Advisor SPARK Advisory Partners

Andrew Emmott / James Keeshan / Neil Baldwin greatlandgold@sparkapl.com | +44 203 368 3550

Corporate Brokers

Berenberg | Matthew Armitt / Jennifer Lee | +44 203 368 3550 Canaccord Genuity | James Asensio / Patrick Dolaghan | +44 207 523 8000 SI Capital Limited | Nick Emerson / Sam Lomanto | +44 148 341 3500

Media Relations

UK - Gracechurch Group | Harry Chathli / Alexis Gore / Henry Gamble | +44 204 582 3500 Australia - Fivemark Partners | Michael Vaughan | +61 422 602 720

About Greatland

Greatland is a mining development and exploration company focused primarily on precious and base metals.

The Company's flagship asset is the world-class Havieron gold-copper project in the Paterson Province of Western Australia, discovered by Greatland and presently under development in joint venture with ASX gold major, Newcrest Mining Limited.

Havieron is located approximately 45km east of Newcrest's existing Telfer gold mine. The box cut and decline to the Havieron orebody commenced in February 2021. Development continues to accelerate with record advancement achieved in the December 2022 quarter. Havieron is intended to leverage the existing Telfer infrastructure and processing plant. Access to Telfer will de-risk the development, reduces capital expenditure and lowers the project's carbon footprint.

Greatland has a proven track record of discovery and exploration success and is pursuing the next generation of tier-one mineral deposits by applying advanced exploration techniques in under-explored regions. Greatland has a number of exploration projects across Western Australia and in parallel to the development of Havieron is focused on becoming a multi-commodity miner of significant scale.

Competent Persons Statement

Information in this announcement pertaining to Reporting of Exploration Results has been reviewed and approved by Mr Damien Stephens, a Member of the AusIMM, who has more than 30 years relevant industry experience. Mr Stephens is a full-time employee of the Company and has a financial interest in Greatland. Mr Stephens has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results. Mineral Resources and Ore Reserves (the JORC Code) and under the AIM Rules - Note for Mining and Oil and Gas Companies, which outline standards of disclosure for mineral projects. Mr Stephens consents to the inclusion in this announcement of the matters based on this information in the form and context in which it appears. Mr Stephens confirms that the Company is not aware of any new information or data that materially affects the information included in the historical market announcements, and that the form and context in which the information has been presented has not been materially modified.

				Au	Au	Ag	As	Bi	Cu	Мо	Pb	S	Sb	Sn	Те	w	Zn
Hole ID	From	То	Sample	(g/)t	Repeat	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)
RAD002	910	911	GPL007629	0.006		0.27	15	12.57	15.9	1.6	18.3	1.01	0.98	2.5	Х	4.1	25
RAD002	911	912	GPL007630	Х		0.24	7.6	22.72	15.6	1.3	17	1	0.7	2.2	Х	4	14
RAD002	912	913	GPL007631	Х		0.21	12	24.23	15.7	1.2	16.7	1.18	0.59	2.4	Х	4.8	16
RAD002	913	914	GPL007632	Х		0.11	7.5	11.01	9.4	1.3	7.2	0.64	0.33	0.9	Х	2.6	6
RAD002	914	915	GPL007633	Х		0.18	6.9	18.8	12.7	1.3	12	0.85	0.5	2	Х	5.6	8
	~	~ · ~			I	~ ~~						~	~ ~~	~ ~	••		~~

APPENDIX 1 - Mineralised zone RAD002 - 924 - 942.25m (EOH)

RAD002	915	916	GPL007634	Х		0.09	4.8	7.92	7.3	1.4	5.3	0.55	0.29	0.9	Х	4.6	26
RAD002	916	917	GPL007635	Х		0.16	7.7	14.9	11.5	1.2	11.5	0.79	0.67	1.9	Х	5.8	10
RAD002	917	918	GPL007636	Х		0.19	8.6	3.17	11.4	1.6	12.4	0.64	1.36	1.9	Х	5.9	8
RAD002	918	919	GPL007638	Х		0.28	11.4	3.3	68.5	0.9	18.9	0.89	2.43	3.2	Х	8.5	12
RAD002	919	920	GPL007639	Х		0.36	9.7	5.32	73.7	0.9	17.8	1.01	2.41	3.8	Х	16.8	9
RAD002	920	921	GPL007640	Х		0.42	13.8	0.42	62.5	0.7	21.4	1	3.88	3.1	Х	17.9	12
RAD002	921	922	GPL007641	Х		0.31	15.8	1.91	87.2	0.8	16.4	0.93	2.85	2.6	Х	24.3	13
RAD002	922	923	GPL007642	Х		0.23	19.8	26.25	222.6	0.9	14.2	1.19	1.72	2.9	Х	32.9	10
RAD002	923	924	GPL007643	0.032		0.31	30.9	16.65	94.3	1.9	14.8	1.19	3.68	2.4	Х	31.3	12
RAD002	924	925	GPL007644	0.111		0.13	8.7	10.95	155	0.4	4.9	1.02	0.88	3.5	Х	8.3	4
RAD002	925	926	GPL007645	0.085		Х	0.9	0.17	8.1	0.3	7.9	0.09	0.12	2.3	Х	6.2	8
RAD002	926	927	GPL007646	392.669	425.018	2.87	1	1.72	7.9	0.2	0.9	0.16	0.19	3	1	17.1	3
RAD002	927	928	GPL007647	0.203		0.09	0.7	1.6	19.3	0.1	1	0.43	0.34	4.3	Х	13.1	3
RAD002	928	929	GPL007648	1.257		Х	0.6	0.21	19	0.2	0.8	0.07	0.32	6.2	Х	29.8	3
RAD002	929	930	GPL007649	6.139		Х	0.8	0.65	14	0.3	0.9	0.08	0.19	2.5	Х	6.5	2
RAD002	930	931	GPL007650	0.039		Х	2.5	0.34	56.4	Х	0.8	0.24	0.24	15.6	Х	20.7	2
RAD002	931	932	GPL007651	0.054		Х	0.7	0.13	32	0.3	0.7	0.08	0.24	5.1	Х	14.5	5
RAD002	932	933	GPL007652	0.017		Х	0.7	0.12	32.2	0.2	0.7	0.06	0.16	2.5	Х	6.5	4
RAD002	933	934	GPL007653	0.131		Х	2.7	0.25	329.2	0.2	0.7	0.32	1.76	3.8	Х	3.5	4
RAD002	934	935	GPL007654	0.017		Х	0.9	0.49	114.3	0.3	1	0.07	0.2	2.1	Х	4	2
RAD002	935	936	GPL007655	0.164		Х	Х	0.08	12.8	0.2	0.9	0.05	0.17	1.9	Х	6.2	3
RAD002	936	937	GPL007656	0.086		Х	0.6	0.06	2.9	0.2	0.8	Х	0.15	3.5	Х	7.6	5
RAD002	937	938	GPL007657	0.009		Х	1.3	0.08	3.1	0.2	0.9	0.08	0.28	2.1	Х	10.4	2
RAD002	938	939	GPL007658	0.108		Х	2.3	0.07	43.7	0.3	0.8	0.11	0.7	2	Х	12.9	3
RAD002	939	940	GPL007659	0.03		Х	1.8	0.11	12.4	0.1	0.9	0.06	0.28	2	Х	5.4	3
RAD002	940	941	GPL007660	Х		Х	0.8	0.06	2.8	0.1	1	Х	0.24	1.5	Х	9.2	2
RAD002	941	942	GPL007661	0.034		Х	2.4	0.22	27.1	0.2	1.5	0.22	0.24	6.5	Х	8.3	5
RAD002	942	942.25	GPL007662	1.755		0.22	58.3	4.52	1608	0.2	5.5	8.6	0.9	7.1	Х	5	8

JORC Code, 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation) 	 A multi-purpose RC/DD Drill rig was used to drill mud rotary pre-collars from surface to competent ground or through the cover sequence with a diamond tail completed in competent ground/basement, to obtain representative samples in an industry standard method

Criteria	JORC Code Explanation	Commentary. - Station spacing: 100m, on 2 x 400m spaced lines.
Dritting techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc) 	 mud-rotary pre-collars were followed by HQ then NQ diamond drill core to EOH The core is oriented using a Reflex mark III tool, nominally every core run (around 3 or 6m)
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed Measures taken to maximise sample recovery and ensure representative nature of the samples Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material 	 Recovery is measured on core and reconciled against driller's depth blocks in each core tray. Basement core recovery is typically around 100% No specific measures have been taken to maximise recovery, other than employing skilled drillers Half core cut at a consistent spacing from orientation lines assists in sample representivity No relationship between recovery and grade has been observed
Logging Sub-sampling	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography The total length and percentage of the relevant intersections logged If core, whether cut or sawn and whether 	 The logging is of sufficient quality to support a Mineral Resource estimate, and comprises a combination of quantitative and qualitative features. The entire hole is logged Geological logging recorded qualitative descriptions of lithology, alteration, mineralisation, veining, and structure including orientation of key geological features Geotechnical measurements were recorded including Rock Quality Designation (RQD) and solid core recovery Magnetic susceptibility measurements were recorded every metre using a KT20 machine The bulk density of selected drill core intervals was determined at site on selected whole core samples Digital data was recorded on site and stored in an SQL database All drill cores were photographed, prior to cutting and sampling the core The ground EM survey data was interpreted and reported by expert geophysical Consultants NewExCo Drill samples were freighted by road to the laboratory. All
techniques and sample preparation	 quarter, half or all core taken If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry For all sample types, the nature, quality and appropriateness of the sample preparation technique Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling Whether sample sizes are appropriate to the grain size of the material being sampled 	 core is cut with a core saw, and quarter core sampled to the laboratory The samples are assayed at Intertek (Perth, WA) Samples were dried at 105°C, and the bulk of the samples pulverised (using an LM5) to produce a pulped product. Oversize primary samples were crushed and a 3kg subsample then milled with the LM5 mill Sub sampling is reduced to a minimum by using total sample pulverisation prior to sub sampling wherever possible The sample sizes (1-1.5kg) are considered appropriate for the material being sampled
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The samples were assayed for Au by a 50gm fire assay and for a multi-element scan using 4 acid digest and MS and OES finish for pathfinder and lithogeochemical elements. The assays are considered total rather than partial Greatland QA/QC procedures include using reference samples and field duplicate samples every 25 samples, in addition to the laboratories in- house QA/QC methods Analysis of the quality control sample assay results indicates that an acceptable level of accuracy and precision has been achieved and the database contains no analytical data that has been numerically manipulated
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel The use of twinned holes Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols Discuss any adjustment to assay data 	 No twinned holes have been completed All data entry procedures, including original logging, sample depth selection for sampling and recording of sample numbers are recorded digitally in an electronic database There are no adjustments to assay data, other than below detection samples are reported at negative one half the detection limit Extreme high grade Au (>100g/t Au) was noted in the initial fire assay results. The entire mineralised core interval from 920m to EOH was re-assayed at Intertek by Screen Fire

Cuitouic	IODC Code Evployetter	Constant in ansure the accuracy of the original fire assay
Criteria	JORC Code Explanation	results. The fine fraction (<75um) is fire assayed in duplicate and all gold in the coarse fraction is recovered by FA. The total assay grade of the coarse and fine fractions are then calculated by weighted average. Results of the screen fire assays are considered consistent with the original fire assays and the fire assays are reported for consistency
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation Specification of the grid system used. Quality and adequacy of topographic control 	 Drill collar locations were surveyed using hand held GPS RL's were collected with the same GPS Drill rig alignment was attained using fixed gyro instrument. Downhole survey was collected every 30m in diamond drill core segments of the drill hole using a single shot Axis Mining Champ Gyro The topography is generally low relief to flat, elevation within the dune corridors in ranges between 250-265m AHD steepening to the southeast All collar coordinates are provided in the Geocentric Datum of Australian (GDA94 Zone 51). All relative depth information is reported in Australian Height Datum (AHD)
Data spacing and distribution	 Data spacing for reporting of Exploration Results Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied Whether sample compositing has been applied 	 Drill holes are individual exploration holes targeting specific targets, and are not part of a grid pattern as such no mineral resource or reserve is stated No sample compositing has been applied
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material 	 Drilling is oriented at various angles to folded layering, and to identified sulphide mineralised structures. The relationship to possible mineralised structures is unknown at this stage
Sample security	• The measures taken to ensure sample security	 The security of samples is controlled by tracking samples from drill rig to database Entire core samples are delivered by company personnel to a freight company in Port Hedland for delivery by road freight to the assay lab in Perth, where the core is cut and sampled
Audits or reviews	 The results of any audits or reviews of sampling techniques and data 	 No audits or reviews have been completed

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings The security of the tenure held at the time of reporting along with any 	 The Rudall tenement E45/5533 is 100% owned by Greatland Pty Ltd The tenement is subject to a Land Access Agreement with Jamukurnu-Yapalikurnu Aboriginal Corporation
Frankandan	known impediments to obtaining a licence to operate in the area	
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties 	There is no known previous work on the tenement
Geology	 Deposit type, geological setting and style of mineralisation 	 Exploration is for intrusion related and orogenic, structurally controlled Au-Cu deposits similar to Telfer, Havieron and Winu, all located in Neo-Proterozoic Yeneena Group sediments of the Paterson Province, Western Australia
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	 Greatland drill hole collar details are listed in - Table 1 and anomalous results in Table 2
	 easting and northing of the drill hole collar 	
	 elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar 	
	• dip and azimuth of the hole	
	 down hole length and interception depth 	
	 hole length 	

Criteria	JORC Contribution is	Commentary
	justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results and longer lengths of such aggregation should be stated and some typical examples of such aggregations should be shown in detail The assumptions used for any reporting of metal equivalent values should be clearly stated 	 No economically significant results have been reported, and no data aggregation methods have been applied Where anomalous results are quoted (Table 2) the samples have been selected as follows: Au >0.1ppm; or Ag >2ppm; or Cu >500ppm; or Bi >1ppm; or Pb >200ppm; or Zn >1000ppm with a maximum consecutive internal waste of 3m individual assays and their interval widths for reported anomalous intervals are displayed in appendix 1
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known') 	 No economically significant results are reported, and there is no known relationship between reported widths and the geometry of any mineralisation All intercepts are reported downhole as true width is not known
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views 	 Maps are provided in Figures 1-2. No significant discovery is reported
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results 	The reporting is considered balanced
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances 	 No other substantive exploration data other than that provided in the figures
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step- out drilling) Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive 	Downhole EM of RAD002 is planned for 2023

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact ms@lseg.com or visit www.ms.com.

RNS may use your IP address to confirm compliance with the terms and conditions, to analyse how you engage with the information contained in this communication, and to share such analysis on an anonymised basis with others as part of our commercial services. For further information about how RNS and the London Stock Exchange use the personal data you provide us, please see our <u>Privacy Policy</u>.

END

UPDFIFSESTIIFIV