18 April 2024

BHP Group Limited

Operational review for the nine months ended 31 March 2024

Solid operational performance in copper, iron ore and energy coal.

"We remain on track to meet copper, iron ore and energy coal production for the year. Copper volumes have increased by 10 per cent reflecting strong performance and additional tonnes from Copper South Australia, record year-to-date performance from Spence, and improved grades and production at Escondida.

"Western Australia Iron Ore, the lowest cost iron ore producer globally, delivered another consistent period of production despite heavy rainfall. We continue to invest in improvements to our rail and port operations, which are essential for growth in the medium term to 305 million tonnes per annum and beyond.

"At our BMA metallurgical coal operations in Queensland, significant wet weather including the impact of two tropical cyclones and operational challenges impacted production and unit costs, and we have revised guidance for the year. We successfully completed the sale of the Blackwater and Daunia mines on 2 April for a total of up to US\$4.1 bn (100%).

"In Canada, the Jansen Stage 1 project remains ahead of its initial schedule and is now 44 per cent complete. In Western Australia, we expect to announce a decision on the future of our nickel business in the coming months, where efforts to optimise operations and preserve value are underway."

Mike Henry BHP Chief Executive Officer

Summary

Operational performance

Copper production increased 10%

Increased copper production driven by record production at Spence, strong operational performance at Copper South Australia (and the contribution from Prominent Hill and Carrapateena), and improved performance and grade at Escondida.

FY24 production guidance for BMA has been lowered to 21.5 - 22.5 Mt (43 - 45 Mt at 100%). Other updates to FY24 production guidance are reflected in the table below. FY24 unit

cost guidance¹ for BMA has been increased to US\$119/t - US\$125/t.

ESG

MSCI upgrade

In March 2024, ESG ratings provider MSCI upgraded BHP's overall company score based on their assessment of performance under the Social Pillar. This reflects the progress made in Brazil, including in negotiations, and our commitment to deliver full and fair remediation and compensation.

Governance

up to US\$4.1 bn (100%).

decarbonising world.

Portfolio

Completed sale of Blackwater and Daunia

We completed the strategic reshaping of our metallurgical

Whitehaven Coal on 2 April for a total cash consideration of

BMA now has a more focused operational footprint and a

greater portion of higher quality metallurgical coal (>85%)

which is expected to achieve higher relative margins in a

coal business with the divestment of BHP Mitsubishi

Alliance's (BMA) Blackwater and Daunia mines to

Board update

In March, we announced the appointment of Ross McEwan and Don Lindsay as Non-executive Directors, effective 3 April 2024 and 1 May 2024 respectively. We also announced the retirement of Ian Cockerill as a Non-executive Director, effective 4 April 2024.

Production	Quarter performance			YTD perfe	ormance	FY24 production guidance		
	Q3 FY24	v Q2 FY24	v Q3 FY23	YTD Mar FY24	v YTD Mar FY23	Previous	Current	
Copper (kt)	465.9	7%	15%	1,360.3	10%	1,720 - 1,910	1,720 - 1,910	
Escondida (kt)	288.2	13%	15%	816.1	7%	1,080 - 1,180	1,080 - 1,180	Unchanged
Panpa Norte (kt)	61.6	3%	(16%)	199.7	(9%)	210 - 250 ⁱ	210 - 250 ⁱ	Upper end
Copper South Australia (kt)	79.0	(4%)	53%	232.7	49%	310 - 340	310 - 340	Unchanged
Antanina (kt)	33.9	(14%)	15%	105.6	4%	120 - 140	120 - 140	Unchanged
Carajás (kt)	3.2	78%		6.2		-	-	
Iron ore (Mt)	61.5	(7%)	3%	190.5	(1%)	254 - 264.5	254 - 264.5	
WAIO (Mt)	60.3	(6%)	3%	186.8	(1%)	250 - 260	250 - 260	Unchanged
WAIO (100%basis) (Mt)	68.1	(6%)	3%	210.2	(1%)	282 - 294	282 - 294	Unchanged
Samarco (Mt)	1.2	(10%)	12%	3.7	13%	4 - 4.5	4 - 4.5	Upper end
Metallurgical coal - BMA (Mt)	6.0	6%	(13%)	17.4	(16%)	23 - 25	21.5 - 22.5	Lowered
BMA (100%basis) (Mt)	12.1	6%	(13%)	34.7	(16%)	46 - 50	43 - 45	Lowered
Energy coal - NSWEC (Mt)	4.1	8%	5%	11.6	23%	13 - 15	13 - 15	Upper end
Nickel - Western Australia Nickel (kt)	18.8	(4%)	(4%)	58.6	1%	77 - 87	77 - 87	Lower half

Note: changes made to FY24 production guidance since the Q2 FY24 Operational review are shown in italics.

i Production guidance for FY24 is for Spence only and excludes Cerro Colorado which produced 11 kt before ceasing production on 9 November 2023.

1

BHP | Operational review for the nine months ended 31 March 2024

Segment and asset performance | FY24 YTD v FY23 YTD

Further information in <u>Appendix 1</u> Detailed production and sales information for all operations in <u>Appendix 2</u>

Copper

Copper									
Production	Total copper production increased by 10% to 1,360 kt. Copper production guidance for FY24								
1,360 kt Up 10%	remains unchanged at between 1,720 and 1,910 kt.								
YTD Mar FY23 1,240 kt	Escondida 816 kt Up 7% (100% basis)								
FY24e 1,720 - 1,910 kt Average realised price US\$3.72/lb Up 5%	Increased production was primarily due to a higher concentrator feed grade of 0.85%, increasing from 0.79%, as mining progressed into areas of high grade ore as planned following the implementation of measures to manage geotechnical events. Concentrator feed grade for FY24 is expected to be between 0.85% and 0.90%, with 0.92% grade achieved in Q3 FY24. Production guidance for FY24 remains unchanged at between 1,080 and 1,180 kt.								
HY24 US\$3.66/lb	Pampa Norte 200 kt Down 9%								
	Spence production increased by 3% to a nine-month record of 189 kt, driven by improved concentrator throughput and higher recoveries. Record concentrate production was partially offset by lower cathode production, in line with an expected decline in stacked feed grade. The concentrator plant modifications which commenced in August 2022 are expected to be completed in FY24.								
	In March 2024, Spence achieved fully autonomous mine haulage operations (ahead of the Q4 FY24 target date) and has deployed a total of 33 autonomous trucks.								
	FY24 production for Spence is expected to be at the upper end of the guidance range of between 210 and 250kt.								
	Cerro Colorado entered temporary care and maintenance in December 2023, after producing 11 kt for the period.								
	Copper South Australia 233 kt Up 49%								
	Production increased by 49% due to the addition of volumes this year from Prominent Hill and Carrapateena, and strong underlying operational performance at Olympic Dam including the highest quarter of material mined in over 10 years in Q3 FY24. Strong smelter performance at Olympic Dam was supported by ongoing transfers of concentrate from Prominent Hill and initial transfers from Carrapateena in Q3 FY24, for processing to higher margin cathode. Crusher 2 at Carrapateena was commissioned in Q3 FY24 and remains on track to ramp up in Q4 FY24.								
	Production guidance for FY24 remains unchanged at between 310 and 340 kt.								
	We are continuing exploration drilling across the Copper South Australia province to enhance our resource knowledge in support of our growth studies. At Oak Dam, we are progressing the external approval process for an underground access decline to enable faster and lower cost resource definition drilling of the mineral deposit, and we expect to be able to provide an Inferred Mineral Resource for Oak Dam later this calendar year.								
	Other copper								
	At Antamina, copper production increased by 4% to 106 kt, while zinc production was 2% higher at 88 kt, both as a result of higher throughput offsetting planned lower concentrator feed grades. Production guidance remains unchanged for FY24, with copper production of between 120 and 140 kt, and zinc production of between 85 and 105 kt.								
	Carajás produced 6.2 kt of copper and 4.1 troy koz of gold. In Q3 FY24 operations continued to ramp back up, and shipments also resumed, following the temporary stoppage of operations between August and October 2023 due to a geotechnical event.								
	2 BHP Operational review for the nine months ended 31 March 2024								
Iron ore									
Production 190 Mt Down 1%	Total iron ore production decreased by 1% to 190 Mt. Production guidance for FY24 remains unchanged at between 254 and 264.5 Mt.								
YTD Mar FY23 192 Mt	WAIO 187 Mt Down 1% 210 Mt (100% basis)								
FY24e 254 - 264.5 Mt	Production was marginally lower due to heavy rainfall throughout Q3 FY24, the continued tie-in activity for the Rail Technology Programme (RTP1), the impacts of the ongoing ramp up of the Central Pilbara hub (South Flank and Mining Area C) and a bushfire near Yandi.								
Average realised price US\$104.53/wmt Up 3% HY24 US\$103.70/wmt	South Flank remains on track to ramp up to full production capacity of 80 Mtpa (100% basis) by the end of FY24. The Port Debottlenecking Project (PDP1) was commissioned in December 2023 and ramp up remains on track to be completed in CY24.								
	Production guidance for FY24 remains unchanged at between 250 and 260 Mt (282 and 294 Mt on a 100% basis).								
	Samarco 3.7 Mt Up 13% 7.4 Mt (100% basis)								

Production increased as a result of higher concentrator throughput. FY24 production is expected to be at the upper end of the 4 - 4.5 Mt guidance range.

Metallurgical coal	
Production	BMA 17.4 Mt Down 16% 34.7 Mt (100% basis)
17.4 Mt Down 16% YTD Mar FY23 20.5 Mt	Following the tragic fatality of a team member in January 2024, BMA operations were suspended for 24 hours while a safety stop was implemented across all mines, and for a further 3.5 days at Saraji.
FY24e 21.5 - 22.5 Mt Average realised price US\$272.09/t Up 6%	Production has been impacted by increased planned maintenance, an extended longwall move at Broadmeadow as well as increased stripping to improve supply chain stability at our open cut operations to restore depleted inventory positions arising from extended weather impacts and labour constraints over recent years. Our focus on restoring depleted inventory will continue
HY24 US\$266.43/t	into CY25. Despite improved production in Q3 FY24, the impacts of higher than planned wet weather, including two tropical cyclones in the region, and the temporary suspension of operations following the fatality at Saraji have impacted our FY24 production estimates. Production for FY24 is now expected to be between 21.5 and 22.5 Mt (43 and 45 Mt on a 100% basis). This has been lowered from 23 - 25 Mt (46 - 50 Mt on a 100% basis).
	As a result, unit cost guidance for FY24 ¹ has increased to between US\$119/t and US\$125/t, from US\$110 - US\$116/t.
	3 BHP Operational review for the nine months ended 31 March 2024
Energy coal	
Production	NSWEC 11.6 Mt Up 23%
11.6 Mt Up 23%	Increased production as a result of continued strong operating performance as improved
YTD Mar FY23 9.4 Mt	weather conditions enabled an uplift in truck productivity. Domestic sales under the NSW Government Coal Market Price Emergency (Directions for Coal Mines) Notice commenced in Q4
FY24e 13 - 15 Mt	FY23, which has resulted in a lower proportion of washed coal and further contributed to the higher volumes.
Average realised price US\$120.97/t Down 6% HY24 US\$123.29/t	Production for FY24 is expected to be at the upper end of the guidance range of between 13 and 15 Mt. The approval process in relation to the modification request submitted to the NSW Government to extend mining approval to 30 June 2030 will continue into FY25. The approval would allow NSWEC to continue mining beyond its current mining consent that expires in 2026 and proceed with a managed process to cease mining at the asset by the end of FY30.

Group & Unallocated

-	
Nickel	
Production	Western Australia Nickel 59 kt Up 1%
59 kt Up 1%	Production increased, despite significant wet weather impacts in Q3 FY24. Production for FY24
YTD Mar FY23 58 kt	is expected to be in the lower half of the guidance range of between 77 and 87 kt.
FY24e 77 - 87 kt	As announced in our HY24 results in February 2024, we continue to review our plans for Western Australia Nickel with a focus on preserving cash. This includes optimising operations and maintenance schedules, reviewing capital plans, and reducing contractor spend and
Average realised price	equipment hire. Our review also includes assessing the potential to place Nickel West into a
US\$18,104/t Down 1%	period of care and maintenance and the phasing and capital spend for the development of the West Musgrave project. We expect to provide an update on the longer-term future of Western
HY24 US\$18,602/t	Australia Nickel by the FY24 results in August 2024.

Quarterly performance | Q3 FY24 v Q2 FY24

Copper		Iron ore	
466 kt Up 7% Q2 FY24 437 kt	Higher concentrator grade at Escondida and concentrator throughput at Spence, partially offset by lower volumes at Copper South Australia due to planned maintenance and the commissioning of Crusher 2 at Carrapateena in Q3 FY24.	61 Mt Down 7% Q2 FY24 66 Mt	Lower production at WAIO as a result of wet weather, a bushfire near Yandi and the impacts of the RTP1 tie-in activity, partially offset by improved underlying mine performance.
Metallurgical coal		Energy coal	
6.0 Mt Up 6%	Escondida and concentrator throughput at Spence, partially offset by lower volumes at Copper South Australia due to planned maintenance and the commissioning of Crusher 2 at Carrapateena in Q3 FY24.	4.1 Mt Up 8%	Increased production as a result of
Q2 FY24 5.7 Mt	unfavourable weather. Operations were temporarily suspended for safety stops following the fatality of a team	Q2 FY24 3.9 Mt	favourable mining sequence, strong production performance and a reduced proportion of washed coal.
Nickel			
19 kt Down 4%	Lower volumes due to planned		

19 kt Down 4%

Lower volumes due to planned

The following footnotes apply to this Operational Review:

1 FY24 unit cost guidance is based on exchange rate of AUD/USD 0.67.

4

BHP | Operational review for the nine months ended 31 March 2024

Appendix 1

Average realised prices¹

			Y	TD Mar FY24
		YTD Mar	Q3 FY24 v	v
	Q3 FY24	FY24	Q2 FY24	H1 FY24
Copper (US\$/lb) ²	3.85	3.72	5%	5%
Iron ore (US\$/wmt, FOB)	106.30	104.53	(3)%	3%
Metallurgical coal (US\$/t)	281.51	272.09	(4)%	6%
Hard coking coal $(US\$/t)^3$	293.94	281.98	(4)%	7%
Weak coking coal (US\$/t) ³	208.91	206.38	(2)%	2%
Thermal coal (US\$/t) ⁴	116.11	120.97	(4)%	(6)%
Nickel metal (US\$/t) ⁵	16,581	18,104	(1)%	(1)%

1 Based on provisional, unaudited estimates. Prices exclude sales from equity accounted investments, third party product and internal sales, and represent the weighted average of various sales terms (for example: FOB, CIF and CFR), unless otherwise noted. Includes the impact of provisional pricing and finalisation adjustments.

2 Does not include sales from assets acquired through the purchase of OZL.

3 Hard coking coal (HCC) refers generally to those metallurgical coals with a Coke Strength after Reaction (CSR) of 35 and above, which includes coals across the spectrum from Premium Coking to Semi Hard Coking coals, while weak coking coal (WCC) refers generally to those metallurgical coals with a CSR below 35.

4 Export sales only. Includes thermal coal sales from metallurgical coal mines.

5 Relates to refined nickel metal only, excludes intermediate products and nickel sulphate.

Current year unit cost guidance

	Previous	Current	
	FY24 guidance ¹	FY24 guidance ¹	
Escondida unit cost (US\$/lb) ²	1.40 - 1.70	1.40 - 1.70	Unchanged
Spence unit cost (US\$/lb)	2.00 - 2.30	2.00 - 2.30	Unchanged
WAIO unit cost (US\$/t)	17.40 - 18.90	17.40 - 18.90	Unchanged
BMA unit cost (US\$/t)	110-116	119 - 125	Increased

1 FY24 unit cost guidance is based on exchange rates of AUD/USD 0.67 and USD/CLP 810.

2 Escondida unit costs for FY24 onwards exclude revenue-based government royalties.

Medium term guidance

	Production	Unit cost
	guidance	guidance1
Escondida ²	1,200 - 1,300 kt	US\$1.30 - \$1.60/lb3
Spence ⁴	~250 kt	
WAIO (100%basis)	>305 Mt	<us\$17 t<="" th=""></us\$17>
1 Modium term unit cost guidence is based on evolution rates of AUD/USD	0.67 and USD/CLP 810	

Medium term unit cost guidance is based on exchange rates of AUD/USD 0.67 and USD/CLP 810.

2 Medium term refers to an average across FY25 and FY26.

3 Escondida unit costs for FY24 onwards exclude revenue-based government royalties.

4 Average of 250 ktpa over five years on the basis that remediation of the previously identified TSF anomalies does not impact operations.

Major projects

Conmodity	Project and ownership	Project scope / capacity	Capital expenditure US\$M	First production target date	Progress
Potash	Jansen Stage 1 (Canada) 100%	Design, engineering and construction of an underground potash nine and surface infrastructure, with capacity to produce 4.15 Mapa.	5,723	End-CY26	Project is 44% conplete
Potash	Jansen Stage 2 (Canada) 100%	Development of additional mining districts, completion of the second shaft hoist infrastructure, expansion of processing facilities and addition of rail cars to facilitate production of an incremental 4.36 Mpa.	4,859	FY29	Approval announced October 2023

Exploration

Minerals exploration and evaluation expenditure was US\$311 m for YTD March 24 (YTD Mar 23: US\$239 m) of which US\$267 m was expensed (YTD Mar 23: US\$196 m).

BHP | Operational review for the nine months ended 31 March 2024

Appendix 2

		-				Production					Quester en de			
		-	Mar	Jun	Quarter ended Sep	Dec	Mar	Mar	Year to date Mar	Var	Mar	Jun	Quarter ender Sep	
			2023	2023	2023	2023	2024	2024	2023	%	2023	2023	2023	
By commodity Metals production otherwise noted.	a and sales summary a is payable metal unless	-												
Throughout this r since it was previo	report figures in italics indicate that	t this figure has bee	en adjusted											
Copper	Payable metal in concentrate	kt	262.4	310.7	317.3	308.7	339.1	965.1	807.2	20%	268.4	323.1	298.0	
	Escondida	kt	200.8	220.5	221.3	207.7	239.2	668.2	612.2	9%	197.3	220.3	209.5	
	Pampa Norte	kt	32.0	32.2	38.8	32.6	39.5 23.3	110.9 74.2	93.1	19%	38.7	38.6	31.3 22.2	
	Copper South Australia Antamina	kt kt	29.6	19.9 36.5	23.5 32.5	27.4 39.2	23.5 33.9	105.6	101.9	4%	32.4	27.6 34.5	32.8	
	Carajás	kt	29.0	1.6	1.2	1.8	3.2	6.2	101.9	470	52.4	2.1	2.2	
	Cathode	kt	143.5	165.5	139.7	128.7	126.8	395.2	433.1	(9)%	130.3	179.9	131.9	
	Escondida	kt	50.8	72.5	52.0	46.9	49.0	147.9	150.1	(1)%	43.8	78.0	49.2	
	Pampa Norte	kt	41.0	36.3	39.5	27.2	22.1	88.8	127.2	(30)%	36.0	42.4	36.6	
	Copper South Australia	kt	51.7	56.7	48.2	54.6	55.7	158.5	155.8	2%	50.5	59.5	46.1	
Lead	Total	kt	405.9 169	476.2 146	457.0 96	437.4 105	465.9	1,360.3 201	1,240.3 511	10% (61)%	398.7 181	503.0 143	429.9 154	
Lead	Payable metal in concentrate Antamina	t	169	146	96	105	-	201	511	(61)%	181	143	154	
Zinc	Payable metal in concentrate	t	23,612	38,822	35,669	33,475	18,409	87,553	86,226	2%	25,851	37,629	33,912	
	Antamina	t	23,612	38,822	35,669	33,475	18,409	87,553	86,226	2%	25,851	37,629	33,912	
Gold	Payable metal in concentrate	troy oz	57,106	96,655	89,024	94,794	79,284	263,102	153,140	72%	57,106	108,552	87,703	
	Escondida	troy	48,954	53,503	48,063	48,633	38,955	135,651	135,592	0%	48,954	53,503	48,063	
	Pampa Norte	troy oz	8,152	9,263	3,931	2,854	1,819	8,604	17,548	(51)%	8,152	9,263	3,931	
	Copper South Australia	troy		32,736	36,228	42,051	36,427	114,706				44,098	34,176	
	Carajás	troy oz		1,153	802	1,256	2,083	4,141				1,688	1,533	
	Refined gold	troy oz	49,086	46,479	53,028	55,828	49,128	157,984	139,550	13%	47,300	49,182	54,036	
	Copper South Australia	troy oz	49,086	46,479	53,028	55,828	49,128	157,984	139,550	13%	47,300	49,182	54,036	
	Total	troy oz	106,192	143,134	142,052	150,622	128,412	421,086	292,690	44%	104,406	157,734	141,739	
Silver	Payable metal in concentrate	troy koz	2,556	2,592	2,582	3,074	2,620	8,276	7,886	5%	2,523	2,409	2,527	
	Escondida	troy koz	1,346	1,008	1,168	1,401	1,328	3,897	4,066	(4)%	1,346	1,008	1,168	
	Pampa Norte	troy koz	409	412	356	388	327	1,071	906	18%	409	412	356	
	Copper South Australia	troy koz		201	260	310	252	822				242	258	
	Antamina	troy koz	801	971	798	975	713	2,486	2,914	(15)%	768	747	745	
	Refined silver	troy koz	277	256	261	221	248	730	833	(12)%	307	270	219	
	Copper South Australia	troy koz troy	277	256	261	221	248	730	833	(12)%	307	270	219	
	Total	koz	2,833	2,848	2,843	3,295	2,868	9,006	8,719	3%	2,830	2,679	2,746	
Uranium	Payable metal in concentrate	t	833	813	825	986	863	2,674	2,593	3%	683	1,275	481	
	Copper South Australia	t	833	813	825	986	863	2,674	2,593	3%	683	1,275	481	
Molybdenum	Payable metal in concentrate	t	636	666	612	481	824	1,917	1,496	28%	789	594	564	
	Pampa Norte Antamina	t	407 229	333 333	329 283	145 336	203 621	677 1,240	657 839	3% 48%	492 297	367 227	303 261	
	Western Australia Iron Ore													
Iron ore	(WAIO)	kt	58,725	64,074	62,004	64,460	60,299	186,763	188,457	(1)%	59,204	62,926	64,180	
	Samarco	kt	1,048	1,221	1,231	1,302	1,174	3,707	3,291	13%	1,111	1,160	1,136	
Matellines ind	Total	kt	59,773	65,295	63,235	65,762	61,473	190,470	191,748	(1)%	60,315	64,086	65,316	
Metallurgical coal ¹	BHP Mitsubishi Alliance (BMA)	kt	6,929	8,477	5,601	5,717	6,035	17,353	20,543	(16)%	6,186	8,876	5,325	
Energy coal	NSW Energy Coal (NSWEC)	kt	3,934	4,765	3,613	3,855	4,149	11,617	9,407	23%	3,667	4,894	3,307	
Nickel	Western Australia Nickel	kt	19.6	22.0	20.2	19.6	18.8	58.6	58.0	1%	19.6	23.4	18.9	
Cobalt	Western Australia Nickel hermal coal sales.	t	175	246	192	182	179	553	506	9%	175	246	192	

6

BHP | Operational review for the nine months ended 31 March 2024

							Production							
			Quarter ended						Year to date		Quarter en ded			
			Mar	Jun	Sep	Dec	Mar	Mar	Mar	Var	Mar	Jun	Sep	
			2023	2023	2023	2023	2024	2024	2023	%	2023	2023	2023	
Production and sales														
By asset Copper Metals production is	payable metal unless otherwise													
noted. Escondida, Chile ¹		BHP interes	t 57 5%											
Licondida, cinic	Material mined	kt	106,170	95,451	87,462	95,168	103,872 31,653	286,502	318,405	(10)%				
	Concentrator throughput Average copper grade -	kt %	33,309 0.78%	30,750 0.93%	33,332	34,752 0.78%	31,653 0.92%	99,737 0.85%	100,114 0.79%	0% 8%				
	concentrator Production ex mill	≫₀ kt	210.0	228.9	0.85% 225.7	217.6	238.6	681.9	637.4	8% 7%				
	Payable copper	kt	200.8	220.5	223.7	207.7	239.2	668.2	612.2	9%	197.3	220.3	209.5	
	Copper cathode (EW)	kt	50.8	72.5	52.0	46.9	49.0	147.9	150.1	(1)%	43.8	78.0	49.2	
	Oxide leach Sulphide leach	kt kt	14.7 36.1	29.3 43.2	17.5 34.5	17.0 29.9	14.4 34.6	48.9 99.0	47.5 102.6	3% (4)%				
	Total copper	kt	251.6	293.0	273.3	254.6	288.2	816.1	762.3	7%	241.1	298.3	258.7	
	Payable gold concentrate	troy oz	48,954	53,503	48,063	48,633	38,955	135,651	135,592	0%	48,954	53,503	48,063	4
	Payable silver concentrate	troy koz	1,346	1,008	1,168	1,401	1,328	3,897	4,066	(4)%	1,346	1,008	1,168	
1 Shown on a 100%	basis.													
Pampa Norte, Chile		BHP interest 100%												
Copper	Payable metal in concentrate	kt	32.0	32.2	38.8	32.6	39.5	110.9	93.1	19%	38.7	38.6	31.3	
	Cathode	kt	41.0	36.3	39.5	27.2	22.1	88.8	127.2	(30)%	36.0	42.4	36.6	
Gold	Total copper	kt troy	73.0 8.152	68.5 9.263	78.3 3.931	59.8 2.854	61.6 1.819	199.7 8.604	220.3 17.548	(9)%	74.7 8.152	81.0 9.263	67.9 3.931	
		oz troy	.,				,			(51)%		.,		
Silver		koz	409	412	356	388	327	1,071	906	18%	409	412	356	
Molybdenum		t	407	333	329	145	203	677	657	3%	492	367	303	
Cerro Colorado ¹	Material mined		172	145						(100)0/				
	Ore stacked	kt kt	3,567	3.928	154		-	154	3,934 12.059	(100)% (99)%				
	Average copper grade - stacked	%	0.57%	0.53%	0.58%	-	-	0.58%	0.56%	4%				
	Copper cathode (EW)	kt	12.0	12.2	9.5	1.6	-	11.1	37.0	(70)%	10.9	14.1	8.8	
Spence														
	Material mined Ore stacked	kt kt	24,858 4,947	25,622 5.625	27,654 5,113	25,973 4,744	15,968 6,008	69,595 15,865	78,794 15.679	(12)%				
	Average copper grade - stacked	%	0.60%	0.58%	0.60%	0.59%	0.56%	0.58%	0.66%	(12)%				
	Concentrator throughout	k+	7 290	6 977	8 473	7 151	8.055	23 679	21 325	11%	I			

Concentiator unoughput	A.1	1,270	0,727	0,775	1,121	0,000	20,017	41,040	11/0	1		
Average copper grade - concentrator	%	0.61%	0.61%	0.64%	0.65%	0.64%	0.64%	0.61%	5%			
Payable copper	kt	32.0	32.2	38.8	32.6	39.5	110.9	93.1	19%	38.7	38.6	31.3
Copper cathode (EW)	kt	29.0	24.1	30.0	25.6	22.1	77.7	90.2	(14)%	25.1	28.3	27.8
Total copper	kt	61.0	56.3	68.8	58.2	61.6	188.6	183.3	3%	63.8	66.9	59.1
Payable gold concentrate	troy											
r uj ubie golu concentuac	oz	8,152	9,263	3,931	2,854	1,819	8,604	17,548	(51)%	8,152	9,263	3,931
Payable silver concentrate	troy koz	409	412	356	388	327	1,071	906	18%	409	412	356
Payable molybdenum	t	407	333	329	145	203	677	657	3%	492	367	303
 Cerro Colorado entered temporary care and maintenanc in December 2023. 	e											
										•		

7

$BHP\,|\,Operational\,review$ for the nine months ended 31 March 2024

Under set of the set							1	Production				1									
Coper contanues2025<				Quarter ended								Quarter end	iec								
Copper constanct) UPD constanct Copper constanct, automic and the second constant and															_						
CoperProvide and an additional provide and additional provide additional provide additi	Copper (continued)			2023	2023	2023	2023	2024	2024	2023	70	2023	2023	2023	-						
$ \begin{array}{ $	Copper South Australia,	Australia																			
$ \begin{array}{c} 1. \\ \mbox{reg}{reg} & \mbox{reg}{reg} & \mbox{k} & \mbox{s} & $	Copper		kt																		
Image: Product only one of the product on the product only one of the product on the product only one of the product on the pro				61.7						166.0	20/	60.6									
Image: second in the				51.7			85.2			155.8	56%	50.5	59.5 87.1	40.1							
облащения (margine) N T				51.7	/0.0		00.2	00.1	212.7	15510	5070	50.5	07.1	00.5							
ColdNot oppose Product meal many oppose Product meal 		concentrate transfer to	kt																		
GMA Note and in the problement in the					-																
Conta concentine mb 00 32.76 41.224 48.051 43.09 132.684 mp - 44.098 44.095 41.205 Reference mb or or 49.086 79.215 69.256 69.257 229.668 139.59 139.59 139.59 49.18 42.08 83.212 1 Silver Marcina instande or oncentine instande or			kt	51.7	76.6	71.7	82.0	79.0	232.7	155.8	49%										
$ \begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Gold		troy oz		32 736	41.424	48.051	43 209	132 684				44.098	34 176							
In tail gold Payshe metal in non Oxympic Dam up or up or the payshe metal in the paysh			trov oz	49.086						139 550	13%	47.300									
Note: Note: <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td></th<>															1						
Silver $\left \begin{array}{cccccccccccccccccccccccccccccccccccc$		Payable metal in																			
SilverNe gold exponential concentinenow tow concentine94,08879,21589,25697,87985,553272,609139,5095%95%SilverRefined alver Refined alver WaterKoz201201323228867533(12%)307229242242258Total silverNov Water Opympic DameNov Water2774575325445301,606833(12%)307512477UnniumNov Water Opympic DameNov Water27774575215315001,55723386% 8631,25223386% 86%6831,275481UnniumNo Water Competition10% Water Refined alver21774575212,5572,6582,5772,5582,6582,6572,5572,6582,6570,550,580,660,6710% <td></td> <td>concentrate transfer to</td> <td>troy oz</td> <td></td>		concentrate transfer to	troy oz																		
Sker nyske metal in loc nyske metal in loc </td <td></td> <td></td> <td>· · · · · ·</td> <td>40.097</td> <td>70.215</td> <td></td> <td></td> <td></td> <td></td> <td>120 550</td> <td>0.59/</td> <td></td> <td></td> <td></td> <td></td>			· · · · · ·	40.097	70.215					120 550	0.59/										
since concentrate kos 201 271 323 282 876				49,086	79,215	89,256	97,879	85,555	272,690	139,550	95%										
Refined silver Nov Nove (Nove concenting tanks) Q27 (Nove (Nove (Nove)) Q26 (Nove (Nove) Q27 (Nove) Q26 (Nove) Q27 (Nove)	Silver				201	271	323	282	876				242	258							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					201	271	525	202	070				2.12	200							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Refined silver		277	256	261	221	248	730	833	(12)%	307	270	219							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Total silver																			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			koz	277	457	532	544	530	1,606	833	93%	307	512	477							
$ \begin{array}{ c c c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c } \hline \begin{tabular}{ c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c } \hline \begin{tabular}{ c c c c c c c c } \hline \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$			troy																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			koz			d 1)	(13)	(30)	(54)												
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			trov			()	(15)	(50)	(51)												
Olympic Dam Material mined Average copper gade Copper called by average unning made Copper called by average unning made by average unn		Net silver		277	457	521	531	500	1,552	833	86%										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Uranium		t	833	813	825	986	863	2,674	2,593	3%	683	1,275	481							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ohumi Dum																				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Olympic Dam	Matarial minad	kt	2 317	2 356	2 655	2 5 2 7	2 747	7 0 3 0	6 003	1.4.94										
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$																					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			kg/t	0.59	0.55	0.56	0.62	0.57		0.58	0%										
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			kt																		
Refined silveto yto y <th colspan="6" td="" th<="" to="" y<=""><td></td><td></td><td>teory on</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td></td> <td></td> <td>teory on</td> <td></td>								teory on												
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-		49,080	40,479	55,028	55,828	49,120	157,984	139,330	1370	47,500	49,182	54,050							
Payable uranium t 833 813 825 986 863 $2,674$ $2,93$ 3% 683 $1,275$ 481 Prominent Hilf Material mined kt $1,228$ $1,652$ $1,800$ $1,473$ $4,925$ Ore milled kt $1,228$ $1,652$ $1,800$ $1,473$ $4,925$ $3,329$ <		Refined silver		277	256	261	221	248	730	833	(12)%	307	270	219							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		Payable uranium							2,674	2,593	3%			481							
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Prominent Hill ²							1													
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								1,094													
Production 2c mill kt 16.3 22.3 23.6 22.3 69.7 Payable copler kt 8.2 12.1 12.9 10.9 35.9 15.7 8.4 Payable gold concentrate troy oz 17,432 22,031 25,779 21,019 68,829 28,856 15.524 Carmpateena ² Material mined kt 850 1,201 1,310 1,232 3,743 Ore milled kt 856 1,203 1,307 1,226 3,763 Average copper grade % 1,576 49.2 45.9 132.7 Payable colver kt 11.7 14.1 17.7 16.5 48.3 11.9 13.8 Average copper grade % 15,304 19.93 22,272 22,190 63,855 15,242 18,652 Payable colver toy oz 15,30 1,307 1,264 3,855 15,242 18,652 Payable colver on ov oz 15,304 19,393 22,2,72 22																					
Payable gold concentrate Payable silver concentrate biological silver concentrate topy or box 17,432 22,031 25,779 21,019 68,829 28,856 15,524 Campateena ² 44 63 65 62 190 87 53 Campateena ²																					
Payable silver concentrate troy koz 44 63 65 62 190 87 53 Campateena ^a Material mined Ore miled kt 880 1,201 1,310 1,232 3,743 Ore miled kt 850 1,201 1,307 1,226 3,763 Average copper gnale % 1,52% 1,29% 1,52% 1,44% 153 Physiolic gold concentrate tit 30,73 37,6 44,97 144% 153 11,9 13,8 Physiolic gold concentrate toty or toty 15,304 19,393 22,272 22,190 63,855 15,242 18,652 Physiolic gold concentrate tory or tory 15,7 208 258 220 686 155 205 Physiolic gold concentrate tory or tory 157 208 258 220 686 155 205 Physiolic gold consentrate tory or tory 157 208 258 220 686 155 205			kt																		
Campateena ² 44 63 65 62 190 87 53 Campateena ² Material mined kt 880 1,201 1,310 1,232 3,743 Ore milled kt 856 1,203 1,307 1,226 3,763 Average copper grade % 1.52% 1.52% 1.52% 1.44% Production ex mill kt 30.1 37.6 49.2 45.9 132.7 Payable copper kt 11.7 14.1 17.7 16.5 48.3 15,242 18,652 Payable coll concentrate troy oz 15,304 19,393 22,272 22,190 63,855 15,242 18,652 Payable solver concentrate troy oz 157 208 258 220 686 155 205 1 Excludes prior yer poduction previously reportad		Payable gold concentrate			17,432	22,031	25,779	21,019	68,829				28,856	15,524							
Campateena ² Material mind kt 880 1.201 1.310 1.232 3.743 Ore milled kt 856 1.230 1.307 1.226 3.763 Average copper grade % 1.52% 1.24% 1.52% 1.44% Production ext mill kt 30.1 37.6 49.2 45.9 132.7 Payable copper kt 1.1.7 1.4.1 17.7 16.5 48.3 11.9 13.8 Payable coll concentrate troy oz 1.5.304 19.393 22.272 22.190 63.855 15.242 18.652 Payable silver concentrate troy		Payable silver concentrate	troy			(3)		(2)	100												
Material mined kt 880 1,210 1,310 1,223 3,743 Ore milled kt 856 1,230 1,307 1,226 3,763 Average copper gade % 1,52% 1,29% 1,52% 1,44% Production ex mill kt 30.1 37.6 49.2 45.9 132.7 Payable copper kt 11.7 14.1 17.7 16.5 48.3 11.9 13.8 Payable copler kto 15,304 19,393 22,272 22,190 63.855 15,242 18,652 Payable silver concentrate troy transfered 157 208 258 220 686 155 205 1 Excludes prior year production merivously reported and transfered during the period. 157 208 258 220 686 155 205 2 Poduction and salse included from 1 May 2023, following the 157 208 208 208 208 208 208 208 155			KOZ		44	0.5	65	62	190				8/	55							
Material mined kt 880 1,210 1,310 1,223 3,743 Ore milled kt 856 1,230 1,307 1,226 3,763 Average copper gade % 1,52% 1,29% 1,52% 1,44% Production ex mill kt 30.1 37.6 49.2 45.9 132.7 Payable copper kt 11.7 14.1 17.7 16.5 48.3 11.9 13.8 Payable copler kto 15,304 19,393 22,272 22,190 63.855 15,242 18,652 Payable silver concentrate troy transfered 157 208 258 220 686 155 205 1 Excludes prior year production merivously reported and transfered during the period. 157 208 258 220 686 155 205 2 Poduction and salse included from 1 May 2023, following the 157 208 208 208 208 208 208 208 155	Carrapateena ²																				
Average copper grade % 1.52% 1.52% 1.52% 1.4% Production ex mill X0 37.6 49.2 45.9 132.7 Payable copper kt 11.7 14.1 17.7 16.5 48.3 11.9 13.8 Payable copper kt 19,393 22,272 22,100 63,855 15,242 18,652 Payable silver concentrate mov koz 157 208 258 220 686 15 205 1 Excludes prior year production previously reported at transfered during the period. 157 208 258 220 686 155 205 2 Production and salse included from 1 May 2023, following the 58 58 155 205 155 205	1							1,232				1									
Production ex mill kt 30.1 37.6 49.2 45.9 132.7 Payable copper kt 11.7 14.1 17.7 16.5 48.3 11.9 13.8 Payable copler toy oz 15,304 19,393 22,272 22,190 63,855 15,242 18,652 Payable silver concentrate troy oz 157 208 258 220 686 155 205 1 Excludes prior year production previously reported and ranskien cluded from 1 May 2023, following the 157 208 258 220 686 155 205								1,226	3,763												
Payable copper kt 11.7 14.1 17.7 16.5 48.3 11.9 13.8 Payable gold concentrate troy oz 15,304 19,393 22,272 22,100 63,855 15,242 18,652 Payable silve concentrate troy koz 157 208 258 220 686 15 205 1 Excludes prior year production previously reported at transfered during the period. 208 258 220 686 15 205 2 Production an skeis: included from 1 May 2023, following the 5 5 5 5 5 5							1.52%	1.52%				1									
Payable gold concentrate troy or v 15,304 19,393 22,272 22,190 63,855 15,242 18,652 Payable silver concentrate troys 157 208 258 220 686 155 205 1 Excludes prior year production previously reported and ranshimed during the period. 2 58 258 20 686 155 205 2 Production and sales included from 1 May 2023, following the 58							49.2					1	11.0	13.8							
Payable silver concentrate troy koz 157 208 258 220 686 155 205 1 Excludes prior year production previously reported and transferred during the period. 2 Production and sales included from 1 May 2023, following the												1									
Instance					10,001	.,,,,,,	,- / -	22,170	00,000			1		10,002							
transferred during the period. 2 Production and sakes included from 1 May 2023, following the					157	208	258	220	686			1	155	205							
2 Production and sales included from 1 May 2023, following the	1 Excludes prior year pro	duction previously reported and										1									
			na tha									1									
acquisition of our participation of a may every			ng me									1									
												•									

$BHP\,|\,Operational\,review$ for the nine months ended 31 March 2024

							Production				Í.				
		-	Quarter ended						Year to date		Quarter ended				
		-	Mar 2023	Jun 2023	Sep 2023	Dec 2023	Mar 2024	Mar 2024	Mar 2023	Var %	Mar 2023	Jun 2023	Sep 2023	2	
Copper (continued)															
Antamina, Peru		BHP interest 33.759	%												
	Material mined	kt	57,939	62,894	63,310	61,539	56,233	181,082	190,554	(5)%					
	Concentrator throughput	kt	12,349	13,897	14,246	14,824	14,312	43,382	40,479	7%					
	Average head grade - copper	%	0.88%	0.88%	0.83%	0.90%	0.83%	0.85%	0.89%	(4)%					
	Average head grade - zinc	%	1.06%	1.25%	1.17%	1.03%	0.68%	0.96%	1.05%	(9)%					
	Payable copper	kt	29.6	36.5	32.5	39.2	33.9	105.6	101.9	4%	32.4	34.5	32.8		
	Payable zinc	t	23,612	38,822	35,669	33,475	18,409	87,553	86,226	2%	25,851	37,629	33,912	37	
	Payable silver	troy koz	801	971	798	975	713	2,486	2,914	(15)%	768	747	745		
	Payable lead	t	169	146	96	105	-	201	511	(61)%	181	143	154		
	Payable molybdenum	t	229	333	283	336	621	1,240	839	48%	297	227	261		

8

BHP interest 100%

			Production													
			Quarter ended						Year to date				-		Quarter er	nded
			Mar 2023	Jun 2023	Sep 2023	Dec 2023	Mar 2024	_	Mar 2024	Mar 2023	Var %	- 1	Mar 2023	Jun 2023	Sep 2023	De 202
NSWEC, Australia	Front	BHP interest 100%											3 667	4 693	3.087	3 94

BHP | Operational review for the nine months ended 31 March 2024

9

tonnes basis.															
WAIO, Australia		BHP interest 85%													
	Newman Joint Venture	kt	11,925	14,795	13,234	15,468	15,032	43,734	42,150	4%					
	Area C Joint Venture	kt	25,284	28,818	25,804	26,074	24,920	76,798	78,557	(2)%					
	Yandi Joint Venture	kt	4,941	5,359	3,150	4,978	4,434	12,562	16,051	(22)%					
	Jimb lebar ¹	kt	16,575	15,102	19,816	17,940	15,913	53,669	51,699	4%					
	Total	kt	58,725	64,074	62,004	64,460	60,299	186,763	188,457	(1)%					
	Total (100%)	kt	66,163	72,717	69,448	72,670	68,131	210,249	212,590	(1)%					
	Lump	kt									18,0	21 20	,022	20,969	19
	Fines	kt									41,1	83 42	,904	43,211	43
	Total	kt									59,2	04 62	,926	64,180	62
	Total (100%)	kt									66,5	80 71	,172	71,748	70
1 Shown on a 100% b production is 85%.	basis. BHP interest in saleable														
Samarco, Brazil		BHP interest 50%													
	Total	kt	1,048	1,221	1,231	1,302	1,174	3,707	3,291	13%	1,1	11 1	,160	1,136	1
Coal															
Coal production is rep product.	ported on the basis of saleable														
BMA, Australia		BHP interest 50%													
	Blackwater	kt	1,107	1,505	1,295	1,182	1,070	3,547	3,550	0%					
	Goonyella	kt	2,185	2,348	827	1,736	1,824	4,387	5,962	(26)%					
	Peak Downs	kt	1,251	1,424	1,121	846	1,012	2,979	4,056	(27)%					
	Saraji	kt	1,007	1,326	1,010	701	759	2,470	3,270	(24)%					
	Daunia	kt	607	617	545	431	524	1,500	1,372	9%					
	Caval Ridge	kt	772	1,257	803	821	846	2,470	2,333	6%					
	Total ¹	kt	6,929	8,477	5,601	5,717	6,035	17,353	20,543	(16)%					
	Total (100%)	kt	13,858	16,954	11,202	11,434	12,070	34,706	41,086	(16)%					
	Coking coal	kt									5,3	72 7	,448	4,497	4
	Weak coking coal	kt									5	10 1	,064	529	
	Thermal coal	kt									1	04	364	299	
	Total	kt									6,1	86 8	,876	5,325	5
	Total Total (100%)	kt kt										86 8 72 17		5,325 10,650	5
1 Production figures in															

Iron ore Iron ore production and sales are reported on a wet tonnes basis.

Material mined kt 103 74 115 163 352 Ore milled kt 70 119 100 163 352 Average copper grade % 1.71% 1.91% 1.69% 1.93% 1.84% Production ex mill kt 6.6 5.2 7.6 12.9 25.7 Payable copper kt 1.8 1.6 1.2 3.2 6.2 2.1 2.2 Payable gold concentrate troy oz 1,153 802 1,256 2,083 4,141 1,688 1,533 1 Production and sales included from 1 May 2023, following the acquisition of OZL on 2 May 2023.

1 Domestic sal Mines) Notice	Domestic ¹ Total sea are made under the NSW Government 2023.	kt kt Coal Market Price En	3,934 hergency (Direction	4,765 ns for Coal	3,613	3,855	4,149	11,617	9,407	23%	3,667	201 4,894	220 3,307	30 4,25
Other														
Nickel product product.	ion is reported on the basis of saleable													
	lia Nickel. Australia	BHP interest 10	0%											
Mt Keith	Nickel concentrate	kt	38.8	44.5	42.7	43.8	32.4	118.9	121.0	(2)%				
	Average nickel grade	%	16.5	16.2	16.7	16.8	15.2	16.3	16.3	0%				
Leinster	Nickel concentrate	kt	68.4	71.1	66.0	63.4	60.3	189.7	183.1	4%				
	Average nickel grade	%	8.6	8.5	8.1	8.0	7.8	8.0	9.3	(14)%				
	Refined nickel ¹	kt	13.2	13.1	13.8	12.6	8.8	35.2	41.5	(15)%	13.0	13.1	13.2	13.
	Nickel sulphate ²	kt	0.9	0.7	0.9	0.7	1.0	2.6	2.5	4%	0.9	0.8	0.8	0.
	Intermediates and nickel by-	kt												
	products3		5.5	8.2	5.5	6.3	9.0	20.8	14.0	49%	5.7	9.5	4.9	6.
	Total nickel	kt	19.6	22.0	20.2	19.6	18.8	58.6	58.0	1%	19.6	23.4	18.9	20.
	Cobalt by-products	t	175	246	192	182	179	553	506	9%	175	246	192	11
	refined nickel metal, including													
briquettes and														
	ate crystals produced from nickel													
powder.														
3 Nickel conta	ined in matte and by-product streams.										1			

10

BHP | Operational review for the nine months ended 31 March 2024

Variance analysis relates to the relative performance of BHP and/or its operations during the nine months ended March 2024 compared with the nine months ended March 2023, unless otherwise noted. Production volumes, sales volumes and capital and exploration expenditure from subsidiaries are reported on a 100% basis; production and sales volumes from equity accounted investments and other operations are reported on a proportionate consolidation basis. Numbers presented may not add up precisely to the totals provided due to rounding.

The following abbreviations may have been used throughout this report: billion tonnes (Bt); cost and freight (CFR); cost, insurance and freight (CIF), carbon dioxide equivalent (CO2-e), dry metric tonne unit (dmtu); free on board (FOB); giga litres (GL); greenhouse gas (GHG); grams per cubic centimeter (g/cm3), grams per tonne (g/t); high-potential injury (HPI); kilograms per tonne (kg/t); kilometre (km); million ounces per annum (Mozpa); metres (m), million pounds (Mlb); million tonnes (Mt); million tonnes per annum (Mtpa); ounces (oz); OZ Minerals Limited (OZL); part per million (ppm), pounds (lb); thousand ounces (koz); thousand ounces per annum (kozpa); thousand tonnes per annum (ktpa); thousand tonnes per day (ktpd); tonnes (t); total recordable injury frequency (TRIF); wet metric tonnes (wmt); and year to date (YTD).

In this release, the terms 'BHP', the 'Group', 'BHP Group', 'we', 'us', 'our' and 'ourselves' are used to refer to BHP Group Limited and, except where the context otherwise requires, our subsidiaries. Refer to note 30 'Subsidiaries' of the Financial Statements in BHP's 30 June 2023 Annual Report for a list of our significant subsidiaries. Those terms do not include non-operated assets. Notwithstanding that this release may include production, financial and other information from non-operated assets, non-operated assets are not included in the BHP Group and, as a result, statements regarding our operations, assets and values apply only to our operated assets unless stated otherwise. Our non-operated assets include Antamina and Samarco. BHP Group cautions against undue reliance on any forward-looking statement or guidance in this release. These forward-looking statements are based on information available as at the date of this release and are not guarantees or predictions of future performance and involve known and unknown risks, uncertainties and other factors, many of which are beyond our control and which may cause actual results to differ materially from those expressed in the statements contained in this release.

Further information on BHP can be found at <u>bhp.com</u>

Authorised for lodgement by: Stefanie Wilkinson Group Company Secretary

Media Relations

Email: media.relations@bhp.com

Australia and Asia

Cabrielle Notley Tel: +61 3 9609 3830 Mobile: +61 411 071 715

Europe, Middle East and Africa

Neil Burrows Tel: +44 20 7802 7484 Mobile: +44 7786 661 683

Americas

Renata Fernandez Mobile: +56 9 8229 5357

BHP Group Limited ABN 49 004 028 077 LEI WZE1WSENV6JSZFK0JC28 Registered in Australia

Investor Relations

Email: <u>investor.relations@bhp.com</u>

Australia and Asia

John-Paul Santamaria Mobile: +61 499 006 018

Europe, Middle East and Africa

James Bell Tel: +44 20 7802 7144 Mobile: +44 7961 636 432

Americas

Monica Nettleton Mobile: +1 416 518 6293 Registered Office: Level 18, 171 Collins Street Melbourne Victoria 3000 Australia Tel +61 1300 55 4757 Fax +61 3 9609 3015

BHP Group is headquartered in Australia Follow us on social media

11

4

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact ms@lseg.com or visit www.ms.com.

Þ

RNS may use your IP address to confirm compliance with the terms and conditions, to analyse how you engage with the information contained in this communication, and to share such analysis on an anonymised basis with others as part of our commercial services. For further information about how RNS and the London Stock Exchange use the personal data you provide us, please see our <u>Privacy Policy</u>.

END

DRLFFFEFSIIDLIS