

4 February 2025, 08:45 UTC

The information contained within this announcement is deemed by the Company to constitute inside information as stipulated under the Market Abuse Regulations (EU) No. 596/2014 (MAR) as in force in the United Kingdom pursuant to the European Union (Withdrawal) Act 2018.

Upon the publication of this announcement via Regulatory Information Service (RIS), this inside information will be in the public domain.

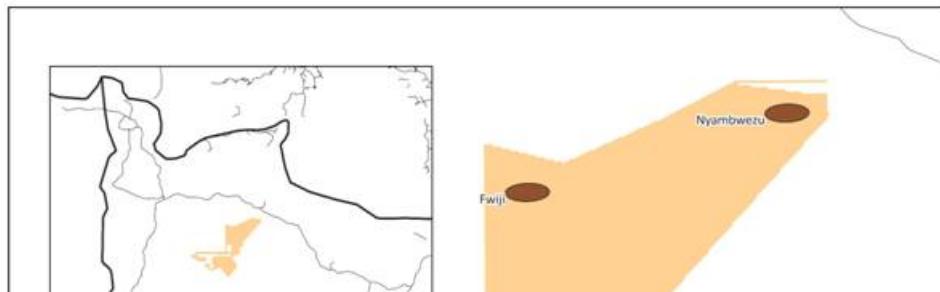
Arc Minerals Ltd

('Arc' or the 'Company')

Assay Results Extends Copper Mineralisation

Arc Minerals (LSE: ARCM), an exploration company forging partnerships to discover and develop Tier 1 copper deposits, is pleased to provide an update on exploration activities at its Joint Venture with a subsidiary of Anglo American in Zambia.

Highlights


- **Diamond Drill Hole KCDD002 - 40.60m @ 0.61% Cu from 22.25m**
 - **Incl. 7.70m @ 1.72% Cu from 26.75m, or**
 - **12.75m @ 1.20% Cu from 22.25m**
- **Mineralisation confirmed 1.5km from Cheyeza East Oxide Occurrence**
- **Both Oxide and Sulphide Mineralisation Intersected**
- **Six holes completed for a total of 4,016m drilled at four targets**
- **Deepest hole drilled down to 977.40m**
- **Sulphide Mineralisation confirmed at Nkwazhi**

Nick von Schirnding, Executive Chairman of Arc Minerals, commented:

"I am delighted to report that the first assay results of the Anglo JV confirm additional near-surface copper mineralisation at the Cheyeza target. The newly drilled mineralisation is similar to historic assays in terms of both grade and thickness and is over 1.5 km away from Cheyeza. Work is now underway to identify further potential drilling targets at Cheyeza to test the extents of sulphide mineralisation."

Commentary

Following an extensive geological mapping and rock chip and soil sampling program over the Anglo JV license areas (Fig 1.), a diamond drilling campaign commenced in August 2024 with six drill holes completed for 4016 m. Assay results have now been received for three of the six holes.

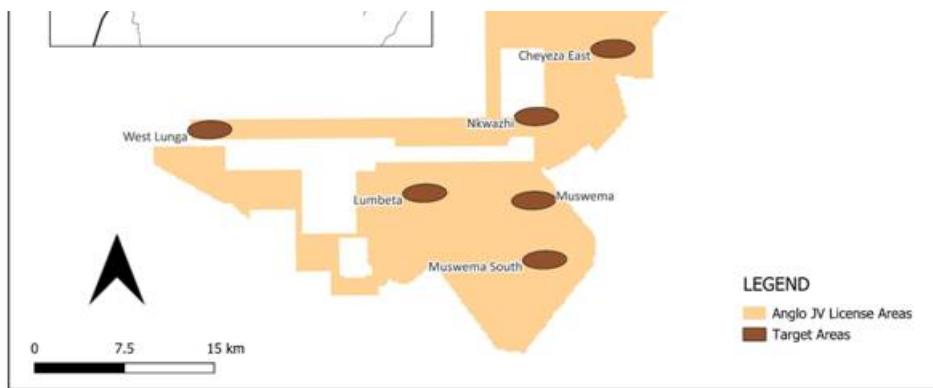


Figure 1. Anglo JV License Area

Near surface mineralisation observed at a new target approximately one and a half kilometres east of the existing oxide occurrence at Cheyeza (November 7th 2024 announcement, Figure 2.) has been verified by diamond drilling. Assay data from hole KCDD002 includes 40.60m at 0.61% Cu from 22.25m down the hole, including 12.75m @ 1.20% Cu from 22.25m and 7.70m @ 1.72% Cu from 26.75m.

The KCDD002 assay results demonstrate the potential to add to the known extents of the oxide occurrences at Cheyeza, where similar high grade zones have been intersected and reported in the past. Historic hole CHDDE004 intersected 18m @ 2.35% Cu from 30.60m with a higher grade zone of 7.60m @ 4.15% Cu from 39m, and hole CHDDE060 intersected 39m @ 1.47% Cu with a higher grade zone of 10m @ 2.25% Cu from 41m.

Importantly and unlike the previously reported oxide occurrence which is characterised as being a remobilised copper oxide occurrence, the oxide mineralisation intersected in hole KCDD002 may be the result of weathering of sulphide mineralisation at source, which is supported by the presence of sulphide mineralisation below the oxide zone.

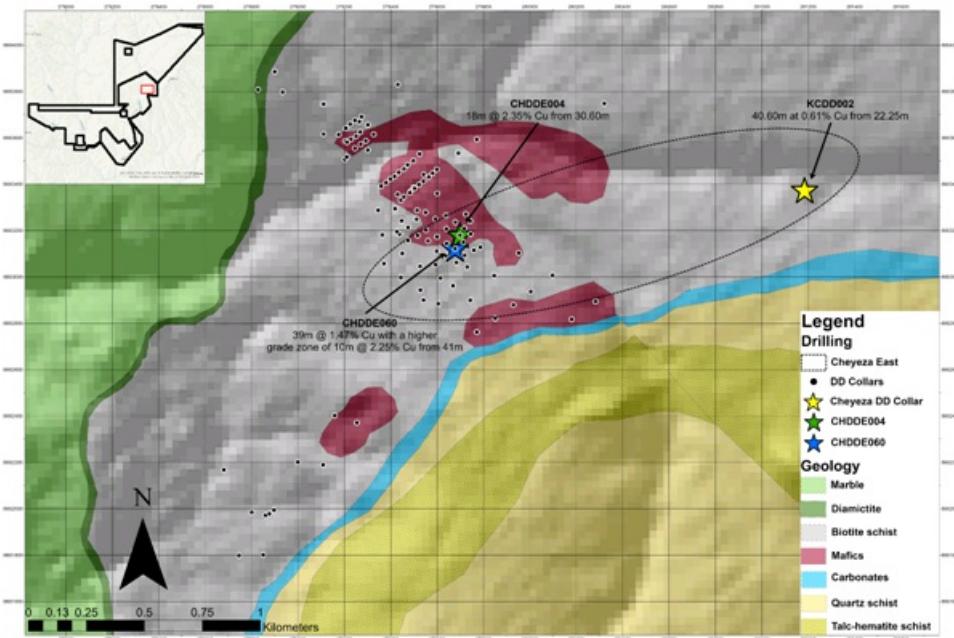


Figure 2. Anglo JV Drillhole at Cheyeza East in relation to the Oxide Occurrence

Assay results have also been received for the two holes drilled at the new target Nkwazhi, where low grade sulphide mineralisation was confirmed in the first hole.

Details and a summary of the results received can be viewed in the Table 1. Report in Appendix A.

Qualified Persons

Mr Vassilios Carellas (BSc (Hons), MAusIMM) is the Chief Operating Officer for Arc Minerals and has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined under the JORC Code (2012). Mr Carellas

consents to the inclusion in this announcement of the technical matters based on his information in the form and context in which it appears.

The Directors of Arc are solely and entirely responsible for the content of this announcement. Neither Anglo American nor any other person, accepts responsibility for the adequacy or accuracy of this news release.

For further information contact:

Arc Minerals Ltd Nick von Schirnding (Executive Chairman)	info@arcminerals.com
Zeus (Nominated Adviser & Joint Broker) Katy Mitchell/Harry Ansell	Tel: +44 (0) 20 3829 5000
Shard Capital Partners LLP (Joint Broker) Damon Heath	Tel: +44 (0) 20 7186 9952

For more information, visit www.arcminerals.com.

Forward-looking Statements

This news release contains forward-looking statements that are based on the Company's current expectations and estimates. Forward-looking statements are frequently characterised by words such as "plan", "expect", "project", "intend", "believe", "anticipate", "estimate", "suggest", "indicate" and other similar words or statements that certain events or conditions "may" or "will" occur. Such forward-looking statements involve known and unknown risks, uncertainties and other factors that could cause actual events or results to differ materially from estimated or anticipated events or results implied or expressed in such forward-looking statements. Such factors include, among others: the actual results of current exploration activities; conclusions of economic evaluations; changes in project parameters as plans continue to be refined; possible variations in ore grade or recovery rates; accidents, labour disputes and other risks of the mining industry; delays in obtaining governmental approvals or financing; and fluctuations in metal prices. There may be other factors that cause actions, events or results not to be as anticipated, estimated or intended. Any forward-looking statement speaks only as of the date on which it is made and, except as may be required by applicable securities laws, the Company disclaims any intent or obligation to update any forward-looking statement, whether as a result of new information, future events or results or otherwise. Forward-looking statements are not guarantees of future performance and accordingly undue reliance should not be put on such statements due to the inherent uncertainty therein.

Background on the Anglo American Joint Venture

Arc Minerals has entered into a Joint Venture Agreement with Anglo American on its Zambian Copper Project (ZPC) comprising a number of licenses covering circa 870km² in the North Western Province, in the Domes region of the Zambian Copperbelt near world-class mines such as First Quantum Minerals' Sentinel and Kansanshi copper mines and Barrick's Lumwana mine.

The license areas are located approximately 900 km from Lusaka, in Mwinilunga, North Western Province, and is well within the trending arm of the major geological structure known as the Lufilian Arc (Copperbelt), on the western flank of the Kabompo Dome.

The Copperbelt is home to all the major copper mines in Zambia and these licenses represent one of the last dome-related areas in Zambia yet to be explored in any detail.

Under the agreement, Anglo American can an earn-in on the ZCP by making a number of project expenditures and assume operator ship of the project. The details of the agreement are set out below:

- Phase 1 - Anglo will pay 14.5M in staged cash payments to Unico Minerals Ltd (67% owned by Arc) and invest up to 24M in exploration expenditures (total 38.5M) within three years and 180 days of the signing of the Agreement (RNS 20.04.23) to secure a 51% interest in ZCP.
- Phase 2 - Anglo may elect to increase its interest in the ZCP to 60% by investing a further 20M (total 58.5M) within two years of the completion of Phase 1.
- Phase 3 - Anglo may elect to increase its interest in the ZCP to 70% by investing a further 30M (total 88.5M) within two years of the completion of Phase 2.

Appendix A

JORC Code, 2012 Edition - Table 1 Report**Section 1 Sampling Techniques and Data**

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<p>Exploration work involved Diamond are well understood, and double tube is competent enough for better core recoveries.</p> <p>Half core samples (split core) were taken which were confirmed visually as we were 0.50m - 1m from the drill core. Samples were taken on the same side of the core cutting line. Whether the sampled side was based on the orientation line.</p> <p>DD Core samples were processed using standard procedures of drying, crushing, splitting and pulverising at Ndola, Zambia.</p> <p>Split core samples received by ALS at 70% -2mm, following which a 250g size reduction was passed 75 microns.</p> <p>A total of 1,258 samples were analysed for Major Elements using ME-ICP06, Chemical Elements using ME-MS81, Volatile trace elements using ME-MS81, and Major Elements using 4ACD81 which is four acid digestion.</p>
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).</i> 	<p>Holes were collared commonly with F1 and F2 around 200 m where the size reduced to NQ at 600m.</p> <p>DD drilling using a double tube core rig from the PQ diameter coring further into the formation and down through the Low Veld formation exceeded 500 and 600 m NQ was used.</p> <p>Core was routinely surveyed using an orientation survey tool called Champ Gyro and R2000 to record the orientation of the core at every 3m or 5m.</p>
Drill sample recovery	<ul style="list-style-type: none"> <i>Method of recording and assessing core and chip sample recoveries and results assessed.</i> <i>Measures taken to maximise sample recovery and ensure representative nature of the samples.</i> <i>Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.</i> 	<p>Core recoveries were measured after recording on a standard log sheet. Core recovery was consistently around 95%, with an overall recovery of 90%.</p> <p>Samples were taken consistently from the core to avoid any bias. During the drilling, the core was frequently checked on procedures to ensure the core was cut correctly in half.</p> <p>Core samples were selected on 1 m intervals. In homogeneous parts without any bias, samples were collected on the 2 m intervals for lithology and grade.</p> <p>Sample recovery was generally very high, with no evidence that any bias exists.</p>

Logging Criteria	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and JORC Code explanation to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<p>There were no RC chip samples but one core was logged from the core</p> <p>Diamond drill core was geological Suitably qualified geologist using pre and physical (alteration, weathering intervals are based on both quality characteristics and semi-quantitative</p> <p>The detail of information captured appropriate Mineral Resource Estimation followed industry best practice and diamond drill core processes.</p> <p>All core is photographed as wet and before sampling, and stored in Image</p> <p>Logging intervals are based on ge nominal length of one or one and incorporates geotechnical parameter veining and geophysical magnetic su</p> <p>Electronic geological logs are dire based laptop computers</p>
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<p>Selected intervals of core were cut in one half selected for further analysis the core box at the exact same location duplicate samples that which were sampled.</p> <p>Split line is always checked that orientation marks.</p> <p>Samples undergo sample preparation (pulverizing) carried out as per ALS La</p> <p>QAQC procedures include the insertion of standards, field duplicates along with standards and blanks. All QAQC (blanks) are within every 20 samples.</p> <p>Sampling is deemed appropriate for the</p>
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	<p>All DD drill samples were analysed with the following methods:</p> <ul style="list-style-type: none"> Major Elements using ME-ICP-MS Trace elements using ME-MICP-MS followed by acid dissolution and ICP-MS Volatile trace elements followed by ICP-MS measurement using ME-4ACD81 (four acid dissolution and measurement) <p>These analytical techniques are considered to be the most accurate and reliable for the analysis of the samples.</p> <p>During sampling Duplicates, Blanks and Standards were inserted on a 1:10 basis. These were inserted on 1:10 basis to also standard QAQC protocols that analyse the samples.</p>
Verification of sampling and assaying	<ul style="list-style-type: none"> The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	<p>There are strong visual indications of mineralisation in the samples and the general geology has been studied to give indications of form and mineralisation. Mineralisation was verified with the observed mineralisation to validate the observed mineralisation.</p> <p>To date no twinning of holes has been observed.</p> <p>All assay data is stored in acQuire and received basis with no adjustment made.</p> <p>Data storage is in an acQuire data Cloud Storage environment.</p>
Location of data points	<ul style="list-style-type: none"> Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	<p>Core was routinely surveyed using a survey tool called Champ Gyro a and orientation of the core at every 3m or 5m interval.</p> <p>Down hole surveys were done every 10m depths for precision considerations.</p>

Criteria <i>Data spacing and distribution</i>	JORC Code explanation	Commentary
	<ul style="list-style-type: none"> • <i>Data spacing for reporting of Exploration Results.</i> • <i>Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.</i> • <i>Whether sample compositing has been applied.</i> 	Drilling was conducted as scout drill spaced roughly 600 m apart. Explor early stages with the drill hole spaci broad as can be expected at this sta density sufficient for Mineral Resour
		No compositing of samples is being a
<i>Orientation of data in relation to geological structure</i>	<ul style="list-style-type: none"> • <i>Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.</i> • <i>If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.</i> 	This was the first phase exploratio spaced drilling and hole orientation of the host stratigraphy as perpendic considered appropriate for the geo mineralisation styles in the Central A
		Existence, and orientation, of prefe not yet fully understood. Structures t bedding planes may be potential con
		No significant bias is expected, but as down hole intersection rather tha
<i>Sample security</i>	<ul style="list-style-type: none"> • <i>The measures taken to ensure sample security.</i> 	Appointed persons are the only one permission is obtained for anyone sample load is still small for a tighte
		Drill core is stored in a locked facilit
<i>Audits or reviews</i>	<ul style="list-style-type: none"> • <i>The results of any audits or reviews of sampling techniques and data.</i> 	An inhouse Regional Geochemist ha and geochemical data with suggest density and reviewing the QAQC prot

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
<i>Mineral tenement and land tenure status</i>	<ul style="list-style-type: none"> • <i>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</i> • <i>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</i> 	<p>The 19906-HQ-LEL exploration license is one Zambian Copper Project (ZCP) that have enter with Anglo American, initially covering circa Province, in the Domes region of the Zambian such as First Quantum Minerals' Sentinel & Barrick's Lumwana mine.</p>
<i>Exploration done by other parties</i>	<ul style="list-style-type: none"> • <i>Acknowledgment and appraisal of exploration by other parties.</i> 	<p>The earliest discovery recorded in the area is the M.O 564a) in 1913 (Guernsey 1952). Between 1927 and 1940, Rhodesia Congo Border and prospecting works, leading to the production (1940) and 1 inch to 2 miles' geological maps, s details, between 1958 and 1960 by Roan Selecti and some of the results are given by McGregor (</p>

Criteria	JORC Code explanation	ZamAnglo Commentary																																												
Geology	<ul style="list-style-type: none"> Deposit type, geological setting and style of mineralization.. 	<p>The Tenement Area falls in an area called the Dc north by the Lufilian arc which is the Pan African tonnes of strata bound sediment Co-Cu deposits Ni, Au, U, Ag and a number of REE.</p> <p>The licence area occurs within the North-West Belt. It overlies the Palaeo-Proterozoic baser sequence hosting millions of valuable commodities.</p> <p>The core of the Kabompo dome is formed by Migmatites. The basement is overlain unconformably by prominent ridge forming quartzites-schist sequence at the base. This is overlain by biotite schist, Wamikumbi and Luigishi formations that are low-grade meta-arenites, meta-argillite, impure quartzites and the west Lunga formation.</p>																																												
Drill hole Information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> easting and northing of the drill hole collar elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	<table border="1"> <thead> <tr> <th>Hole Id</th><th>Easting</th><th>Northing</th><th>Deptl</th></tr> </thead> <tbody> <tr> <td>KCDD002</td><td>281185</td><td>8663374</td><td>413</td></tr> <tr> <td>KNDD001</td><td>273062</td><td>8656795</td><td>626</td></tr> <tr> <td>KNDD002</td><td>273314</td><td>8656334</td><td>476</td></tr> <tr> <td>KKDD001</td><td>261675</td><td>8649342</td><td>746</td></tr> <tr> <td>KMDD001</td><td>273436</td><td>8646616</td><td>775</td></tr> <tr> <td>KMDD002</td><td>270804</td><td>8645043</td><td>971</td></tr> </tbody> </table>	Hole Id	Easting	Northing	Deptl	KCDD002	281185	8663374	413	KNDD001	273062	8656795	626	KNDD002	273314	8656334	476	KKDD001	261675	8649342	746	KMDD001	273436	8646616	775	KMDD002	270804	8645043	971																
Hole Id	Easting	Northing	Deptl																																											
KCDD002	281185	8663374	413																																											
KNDD001	273062	8656795	626																																											
KNDD002	273314	8656334	476																																											
KKDD001	261675	8649342	746																																											
KMDD001	273436	8646616	775																																											
KMDD002	270804	8645043	971																																											
Data aggregation methods on methods	<ul style="list-style-type: none"> In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. grade truncations (grades) and cut-off grades are usually Material and should be stated. 	<table border="1"> <thead> <tr> <th colspan="4">Downhole Mineralised Intervals</th></tr> <tr> <th>Hole ID</th><th>From (m)</th><th>To (m)</th><th>Interval</th></tr> </thead> <tbody> <tr> <td rowspan="5">KCDD002</td><td>22.25</td><td>62.85</td><td></td></tr> <tr> <td>includes from 22.25</td><td></td><td></td></tr> <tr> <td>includes from 26.75</td><td></td><td></td></tr> <tr> <td>Includes from 41.50</td><td></td><td></td></tr> <tr> <td>66.50</td><td>68.00</td><td></td></tr> <tr> <td>KNDD001</td><td>570.58</td><td>577.60</td><td></td></tr> <tr> <td>KNDD002</td><td></td><td></td><td>No Mineralisation</td></tr> <tr> <td>KKDD001</td><td></td><td></td><td>Assay Results are shown</td></tr> <tr> <td>KMDD001</td><td></td><td></td><td>Assay Results are shown</td></tr> <tr> <td>KMDD002</td><td></td><td></td><td>Assay Results are shown</td></tr> </tbody> </table> <p>Results > 0.2% Cu average and with downhole lengths weighted to determine the percent of Copper for each interval.</p> <p>Aggregation of short lengths of high grade and longer lengths of low grade has been summarised in the table above.</p> <p>The value of 0.61% includes 2.5m @0% to 2.5m within the reported interval.</p>	Downhole Mineralised Intervals				Hole ID	From (m)	To (m)	Interval	KCDD002	22.25	62.85		includes from 22.25			includes from 26.75			Includes from 41.50			66.50	68.00		KNDD001	570.58	577.60		KNDD002			No Mineralisation	KKDD001			Assay Results are shown	KMDD001			Assay Results are shown	KMDD002			Assay Results are shown
Downhole Mineralised Intervals																																														
Hole ID	From (m)	To (m)	Interval																																											
KCDD002	22.25	62.85																																												
	includes from 22.25																																													
	includes from 26.75																																													
	Includes from 41.50																																													
	66.50	68.00																																												
KNDD001	570.58	577.60																																												
KNDD002			No Mineralisation																																											
KKDD001			Assay Results are shown																																											
KMDD001			Assay Results are shown																																											
KMDD002			Assay Results are shown																																											

Criteria	JORC Code expansion	Commentary
	<ul style="list-style-type: none"> Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. 	
	<ul style="list-style-type: none"> The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
<i>Relationship between mineralisation widths and intercept lengths</i>	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	Drill intercepts are reported as downhole lengths and will be designed to intersect veins or degrees to the mineralized unit. This will allow of the horizon.
<i>Diagrams</i>	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to figures and tables in the body of the report.
<i>Balanced reporting</i>	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results. 	Refer to the drill hole information tabulated at
<i>Other substantive exploration data</i>	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	None.
<i>Further work</i>	<ul style="list-style-type: none"> The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Based upon these announced results, further phase drill programme appears has intersected the main geological interpretation. Further detail is in the accompanying announcement.

Section 3 Estimation and Reporting of Mineral Resources

Not Applicable

Section 4 Estimation and Reporting of Ore Reserves

Not Applicable

Appendix B - Glossary of Technical Terms

"anomaly or anomalous"

something in mineral exploration that geologists interpret as

	deviating from what is standard, normal, or expected.
"assay"	The laboratory test conducted to determine the proportion of a mineral within a rock or other material. For copper, usually reported as percentage which is equivalent to percentage of the mineral (i.e. copper) per tonne of rock.
"azimuth"	the "compass direction" refers to a geographic bearing or azimuth as measured by a magnetic compass, in true or magnetic north.
"bornite"	Bornite, also known as peacock ore, is a copper sulphide mineral with the formula Cu_5FeS_4 .
"breccia"	Breccia is a rock classification, comprises millimetre to metre-scale rock fragments cemented together in a matrix, there are many sub-classifications of breccias.
"chalcocite"	Chalcocite is a copper sulphide mineral with the formula Cu_2S and is an important copper ore mineral. It is opaque and dark-grey to black with a metallic lustre.
"chalcopyrite"	Chalcopyrite is a copper sulphide mineral with formula $CuFeS_2$. It has a brassy to golden yellow colour.
"chargeability"	Chargeability is a physical property related to conductivity. Chargeability is used to characterise the formation and strength of the induced polarisation within a rock, under the influence of an electric field, suggesting sulphide mineralisation at depth.
"covellite"	Covellite is a copper sulphide mineral with the formula CuS . This indigo blue mineral is ubiquitous in some copper ores.
"diamond drilling"	A drilling method in which penetration is achieved through abrasive cutting by rotation of a diamond encrusted drill bit. This drilling method enables collection of tubes of intact rock (core) and when successful gives the best possible quality samples for description, sampling and analysis of an ore body or mineralised structure.
"dip"	A line directed down the steepest axis of a planar structure including a planar ore body or zone of mineralisation. The dip has a measurable direction and inclination from horizontal.
"geochemical"	Refers to geological information using measurements derived from chemical analysis
"geophysical"	Refers to geological information using unit measurements derived from the use of magnetic and electrical readings
"geophysical techniques"	include the exploration of an area by exploiting differences in physical properties of different rock types. Geophysical methods include seismic, magnetic, gravity, induced polarisation and other techniques; geophysical surveys can be undertaken from the ground or from the air
"gossan"	is an iron-bearing weathered product that usually overlies a sulphide deposit
"grab sample"	are samples of rock material collected from a small area.

		often just a few pieces or even a single piece of rock "grabbed" from a face, dump or outcrop or roughly 2-5kg. These are common types of rock samples collected when conducting mineral exploration. The sample usually consists of material that is taken to be representative of a specific type of rock or mineralisation.
"grade"		The proportion of a mineral within a rock or other material. For copper mineralisation this is usually reported as % of copper per tonne of rock.
"g/t"		grams per tonne; equivalent to parts per million ('ppm')
"hematite"		Hematite is the mineral form of iron(III) oxide (Fe_2O_3), one of several iron oxides. Magnetite alteration is also typically associated with porphyry copper systems, at or close to the central core.
"Indicated Resource"		An "Indicated Mineral Resource" is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics, can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough for geological and grade continuity to be reasonably assumed.
"Inferred Resource"		An "Inferred Mineral Resource" is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes.
"Induced Geophysics"	Polarisation	Induced polarisation (IP) is a geophysical survey used to identify the electrical chargeability of subsurface materials, such as sulphides. The survey involves an electric current that is transmitted into the subsurface through two electrodes, and voltage is monitored through two other electrodes.
"intercept"		Refers to a sample or sequence of samples taken across the entire width or an ore body or mineralised zone. The intercept is described by the entire thickness and the average grade of mineralisation.
"JORC Code"		The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ('the JORC Code') is a professional code of practice that sets minimum standards for Public Reporting of minerals Exploration Results, Mineral Resources and Ore Reserves.
"K"		The element potassium, abundance on surface can be inferred from radiometric surveys
"Magnetics"		Rocks are made up of different minerals and the magnetic properties of a rock depends on the amount and type of iron rich minerals it contains. Earth's magnetic field interacts with these iron rich minerals to generate variations in the magnetic field. Measuring and mapping these variations

	<p>magnetic field. Measuring and mapping these variations allows remotely mapping of the distribution and patterns of magnetic rocks and, as a result, map the subsurface geology</p>
"magnetite"	<p>Magnetite is main iron ore mineral, with chemical formula Fe_3O_4. Magnetite is ferromagnetic, and it is attracted to a magnet and can be magnetized to become a permanent magnet itself.</p>
"massive"	<p>In a geological sense, refers to a zone of mineralisation that is dominated by sulphide minerals. The sulphide-mineral-rich material can occur in centimetre-scale, metre-scale or in tens of metres wide veins, lenses or sheet-like bodies containing sphalerite, galena, and / or chalcopyrite etc.</p>
"Measured Resource"	<p>A "Measured Mineral Resource" is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, and physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate application of technical and economic parameters, to support production planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes that are spaced closely enough to confirm both geological and grade continuity.</p>
"Mineral Resource"	<p>A "Mineral Resource" is a concentration or occurrence of diamonds, natural solid inorganic material, or natural solid fossilised organic material including base and precious metals, coal, and industrial minerals in or on the Earth's crust in such form and quantity and of such a grade or quality that it has reasonable prospects for economic extraction. The location, quantity, grade, geological characteristics and continuity of a Mineral Resource are known, estimated or interpreted from specific geological evidence and knowledge.</p>
"mineralisation"	<p>In geology, mineralisation is the deposition of economically important metals (copper, gold, lead, zinc etc) that in some cases can be in sufficient quantity to form mineral ore bodies.</p>
"open pit mining"	<p>A method of extracting minerals from the earth by excavating downwards from the surface such that the ore is extracted in the open air (as opposed to underground mining).</p>
"outcrop"	<p>A section of a rock formation or mineral vein that appears at the surface of the earth. Geologists take direct observations and samples from outcrops, used in geologic analysis and creating geologic maps. In situ (in place) measurements are critical for proper analysis of the geology and mineralisation of the area under investigation.</p>
"polymict"	<p>A geology term, often applied to breccias or conglomerates, which identifies the composition as consisting of fragments of several different rock types.</p>
"Preliminary Economic Assessment"	<p>NI 43-101 defines a PEA as "a study, other than a pre-feasibility study or feasibility study, which includes an economic analysis of the potential viability of mineral resources".</p>
"Pyrrhotite"	<p>Pyrrhotite is an iron sulphide mineral with the formula $Fe(1-x)S$</p>

	x)S (x = 0 to 0.2). It is a nonstoichiometric variant of FeS, the mineral known as troilite . Pyrrhotite is also called magnetic pyrite
"Radiometrics"	The radiometric, or gamma-ray spectrometric method is a geophysical process used to estimate concentrations of the radioelements potassium, uranium and thorium by measuring the gamma-rays which the radioactive isotopes of these elements emit during radioactive decay
"sediments"	Sedimentary rocks formed by the accumulation of sediments. There are three types, Clastic, Chemical and Organic sedimentary rocks.
"sphalerite"	Sphalerite is a zinc sulphide in crystalline form but almost always contains variable iron, with formula (Zn,Fe)S. It can have a yellowish to honey brown or black colour.
"supergene"	Supergene ore processes occur near surface, and form deposits of secondary minerals, such as malachite, azurite, chalcocite, covellite, digenite, etc.
"surface rock chip samples"	Rock chip samples approximately 2kg in size that are typically collected from surface outcrops exposed along rivers and mountain ridgelines.
"syncline"	a trough of stratified rock in which the beds dip toward each other from either side.
"Th"	The element thorium, abundance on surface can be inferred from radiometric surveys
"U"	The element uranium, abundance on surface can be inferred from radiometric surveys
"veins"	A vein is a sheet-like or anastomosing fracture that has been infilled with mineral ore (chalcopyrite, covellite etc) or mineral gangue (quartz, calcite etc) material, within a rock. Veins form when minerals carried by an aqueous solution within the rock mass are deposited through precipitation and infill or coat the fracture faces.
"volcanics"	Volcanic rock such as andesite or basalt that is formed from magma erupted from a volcano, or hot clastic material that erupts from a volcano and is deposited as volcaniclastic or pyroclastics.
"XRF"	Instrument to determine the chemistry of a sample by measuring the fluorescent (or secondary) X-ray emitted from a sample when it is excited by a primary X-ray source

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact ms@seg.com or visit www.ms.com.

RNS may use your IP address to confirm compliance with the terms and conditions, to analyse how you engage with the information contained in this communication, and to share such analysis on an anonymised basis with others as part of our commercial services. For further information about how RNS and the London Stock Exchange use the personal data you provide us, please see our [Privacy Policy](#).

END

DRLGIGDDSDGDGUS