RNS Number: 5654J Mila Resources PLC 21 May 2025

Mila Resources Plc / Index: LSE / Epic: MILA / Sector: Natural Resources

21 May 2025

Mila Resources Plc ('Mila' or the 'Company')

Highly Positive Gold Results Delivered from Yarrol: Maiden Drilling Programme Unlocks High-Grade Mineralisation

Mila Resources Plc (LSE: MILA), the post-discovery gold exploration accelerator, is pleased to announce the first batch of assay results from its maiden drilling programme at the Yarrol Gold Project in Queensland, Australia. The results received are from the first two holes of a 10-hole programme (Table 1). The results for the remaining eight holes will be released over the coming weeks, with the final assays expected by the end of Q2 2025. The drilling programme was designed to test Mila's geological model being that Yarrol hosts a structurally controlled, multi-lode high-grade gold system with scale potential along a 20km corridor.

The drill targets were chosen following an extensive review of historical data and more recent geophysical studies undertaken by the Mila team in Q1 2025.

Assay Highlights:

Hole MYARC0197 (Figure 2)

- 11m@ 2.91g/t Au from 11m,
 - including 1 m @ 16.45g/t Au from 11 m
- 1m@39.10g/t Au from 32m
- 17m @ 5.46g/t Au from 42m,
 - including 1m@9.25g/t Au from 42m
 - and 8m @ 9.76g/t Au from 51m which includes 1m @ 47.40g/t Au from 54m

Hole MYARC0195 (Figure 3)

- + 2m@1.00g/t Au from 100~m
- 1m@5.19g/t Au from 117 m
- + 2m@6.44g/t Au from 124 m

Cut-off grade of 0.3g/t Au and 2m internal dilution applied to intercepts.

Neil Hutchison, Technical Director

"These initial results have confirmed Mila's confidence in the Yarrol Project, from the initial validation site visit by Mila's geologists, to the completion of the acquisition by the corporate team. The broad widths and high-grade nature of the intersections returned to date support Mila's belief that the Yarrol Project has the potential to deliver a substantial resource with further geological and structural modelling of the ore shoots. As we finalise the sample processing we are excited to await and receive the assay results for the remainder of the drilling programme."

Mark Stephenson, Executive Chairman

"This drilling campaign set out to confirm that Yarrol hosts a high-grade gold system. The team are delighted with these initial results which confirm the historical data is reliable and support the growth potential Mila sees in the project. We look forward to both delivering further drill results at Yarrol in the coming weeks and developing the potential of our other exciting Queensland assets in the coming months."

Stage 1 Drilling Campaign

The maiden programme consisted of 10 Reverse Circulation ("RC") holes for a total of 1,870m of drilling (Figure 1 and Table 2) to test the following:

- i. Confirm historical drill intercepts from historical data;
- ii. Test depth and strike extensions of the historic (non-JORC compliant) resource. These first assays include step-out drilling and infill of the central historic resource area; and
- iii. Test and develop our own geological-structural model based on the reinterpretation of the historical mineralisation

The Company is expecting all assay results back by the end of Q2 2025. These will include infill and deeper holes in the central zone as well as step out and infill drilling at the northern historic resource to target parallel structures

Table 1: Significant Intersections

Twote It Significant Intersections											
Hole ID	Width	From	То	Au g/t							
MYARC0195	2m	100m	102m	1.00							
	1m	117m	118m	5.19							
	2m	126m	128m	6.44							
MYARC0196		Results	pending								
MYARC0197	11m	11m	22m	2.91							
incl	1m	11m	12m	16.45							
	1m	32m	33m	39.10							
	17m	42m	59m	5.47							
incl	1m	42m	43m	9.25							
and incl	8m	51m	59m	9.76							
which incl's	1m	54m	55m	47.40							
MYARC0198		Samples is	n process								
MYARC0199		Samples in	n process								
MYARC0200	Samples in process										
MYARC0201	Samples in process										
MYARC0202		Samples is	n process								
MYARC0203		Samples is	n process								
MYARC0204		Results	pending								

Cut-off grade of 0.3g/t Au and 2m internal dilution applied to intercepts.

See Appendix 1 for full table of results.

Table 2: Drill hole collar details

Hole ID	Type	Depth	Dip	Azimuth	East	North	RL
					MGA94	MGA94	MGA
MYARC0195	RC	198	-60	332	334192	7233867	286
MYARC0196	RC	150	-60	340	334095	7233815	271
MYARC0197	RC	150	-60	300	334469	7234825	271
MYARC0198	RC	162	-60	300	334493	7234676	304
MYARC0199	RC	200	-60	300	334492	7234725	306
MYARC0200	RC	210	-60	300	334531	7234804	311
MYARC0201	RC	200	-60	300	334507	7234843	306
MYARC0202	RC	216	-60	280	334418	7235132	313
MYARC0203	RC	168	-60	300	334450	7235106	303
MYARC0204	RC	216	-60	280	334492	7235058	299
TOTAL		1870m					

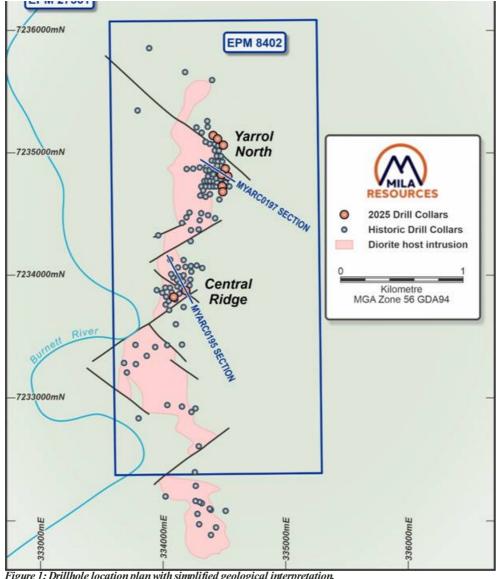


Figure 1: Drillhole location plan with simplified geological interpretation.

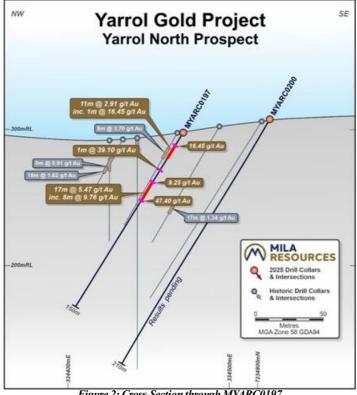


Figure 2: Cross-Section through MYARC0197

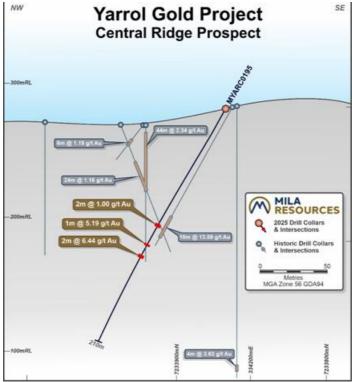


Figure 3: Cross-Section through MYARC0195

System Scale

The initial batch of drill results has provided the team with a strong level of confidence that its geological model is robust and provides further vectors for ongoing exploration. Historic intercepts such as 20m @ 3.9g/t Au and 40.8m @ 2.90g/t Au have now been complemented by new high-grade zones including 17m @ 5.47g/t Au (with a peak of 47.40g/t Au), indicating strong continuity and potential for scale.

Interim Conclusions

- 1. Mila's exploration model is delivering early results confirm continuity and depth potential.
- 2. Only a fraction of the 20km strike has been tested, offering substantial exploration upside.
- 3. High-grade intercepts support the potential for a scalable, high-margin resource.
- 4. Detailed structural and geological modelling of the drilling programme results will greatly assist in unlocking the full potential of the Yarrol mineralisation.

Next Assay Results

The Company expects to release further drilling results from the remaining holes in the coming weeks with the final assays anticipated by the end of Q2 2025 to further test extensions to the known mineralisation.

Upcoming Video Update

Mila's Executive Chairman, Mark Stephenson, will be presenting alongside other leading gold explorers in a StockBox Premiere event today, on Tuesday 21 May at 7:00 PM (BST). To join the presentation, please register here: https://mailchi.mp/0413fcf36619/stockboxpremiere.

Mark will provide further insight into the latest drill results, the significance of the Yarrol system, and the Company's forward exploration strategy.

Competent Person Statement

The information in this announcement relating to Exploration Results is based on information compiled by Neil Hutchison, who is Technical Director of Mila Resources, and a member of The Australasian Institute of Geoscientists. Mr Hutchison has sufficient experience relevant to the style of mineralisation and type of deposit under consideration, and to the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resource and Ore Reserves".

Mr Hutchison consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

For more information visit www.milaresources.com or contact:

Mark Stephenson info@milaresources.com

Mila Resources Plc

Jonathan Evans +44 (0) 20 7100 5100

Tavira Financial Limited

Nick Emerson +44 (0) 20 3143 0600

SI Capital

Damon Heath +44 (0) 20 3971 7000

Shard Capital Partners LLP

Susie Geliher / Charlotte Page +44 (0) 20 7236 1177

St Brides Partners Limited

Mila Resource - The project accelerator, the story so far:

Queens land Portfolio

Mila has taken up the option to acquire three neighbouring properties in South-West Queensland. Each holds historic workings yet are significantly underexplored and represent clear opportunities for discovery and resource growth. This area of Queensland boasts a rich mining heritage and significant ongoing exploration, and Mila's Queensland Portfolio each consisting of multiple targets of Gold, Copper, and other base-metals, each defined at various stages of development, further adding to the project's appeal.

The region, which is parallel to the cost and in proximity to good infrastructure connections, spans from the Cracow and Eidsvold goldfields to major porphyry copper systems like Briggs and Mount Cannindah, with gold, copper, and base metals at the forefront of its mining legacy.

Key highlights of the region's gold mining history include:

- Cracow Gold Mine: Operated by Aeris Resources, the high-grade underground operation is known for its consistent output.
- Mount Rawdon: A bulk-tonnage open-pit gold mine, operated by Evolution Mining.
- Mount Morgan: One of Australia's most historically significant mines, with over eight million ounces of gold and more
 than 400k tonnes of copper produced to date. The mine, now on C&M is owned by Meritage Minerals who are
 looking to re-start production in the coming year.

At Yarrol a historic, non-JORC resource of circa 100 k oz Gold at 1.5 g/t (un-cut) was defined but only to shallow depths (< 80 m) despite intersections of mineralised structures past 150m and further mineralised bands drilled along strike. Since 1994, gold has surged from US 384/oz to US 3,000/oz, delivering a 6.8% CAGR, far outpacing Australia's 2.5% annual inflation. In this new price environment, and with modern processing technology enabling the recovery of lower-grade mineralisation surrounding the high-grade veins, Yarrol now sits in a fundamentally different economic landscape. What was once considered marginal could now be overlooked value. Small scout drilling programmes took place in the early 2000s. The previous operators drilled a handful of exploration holes before their focus shifted toward a novel cobalt discovery within the license. The gold has been repeatedly overlooked, requiring systematic exploration work and detailed structural integration of the existing data sets, to extrapolating the model down dip and along strike to provide critical scale, ultimately unlocking the full value of the property.

Mt Steadman

Targeting gold revival as Mila aims to uncover extensive orebody beyond historic mines Mined from the 1920s-1940s with multiple small underground operations.

Mined from the 1920s-1940s with multiple small underground operations. Mining focussed on the single vein London and Mt

Steadman prospects. The Venus Prospect is characterised by multiple sheeted quartz veins, and extensive historical excavations indicate a significantly larger system than at London and Mt. Steadman. Drilling to date has been limited to shallow depths (typically <100M). Clear potential for both deeper and along strike drilling to expand the zone of known mineralisation and potential resource area. Multiple higher-grade intercepts in historic drilling that were not further investigated.

Monal

Confirmed copper, gold, and zinc targets, which Mila plans to leverage to unlock economic mineralisation potential.

Licence overlies the historic Mondal Gold fields, that produced over 20k oz of gold in the late 19th century and early 20th century. Multiple gold and copper anomalies confirmed from historic work but have not been systematically explored. Limited geophysical surveys despite outcropping sulphide rich material in multiple localities. Mila sees clear potential to quickly advance a number of high value gold and copper targets within the licence. Excellent access to licence allowing time and cost-efficient near-term exploration work.

Kathleen Valley Portfolio

A key pillar in the Mila Portfolio, Kathleen Valley is located in the tier-one Wiluna-Norseman gold belt, 7km from both Bellevue Gold Mine and Liontown Resources, in the heart of Western Australia's major mineral activity. With a strategic position of the land package, and prospective, Milas team is looking to realise value without committing capital in the short term.

Gold

2022 and 2023 exploration campaigns yielded highly promising gold intercepts including 8.38g/t Gold over 10m, 14.86g/t over 6.6m and 4.28g/t over 5m. Drilled a total of 3,103m with an average depth of ~200m, including scout drilling down to a depth of 303m on hole KVRD029. The teams focus is now on growing critical mass of the project, including reviewing near-surface targets, especially in the northern areas, where structural geology work is providing insights into the controlling mineralisation features

Lithium

The project sits next door to Liontown's Lithium and Tantalum Kathleen Valley, a recognised tier one mining jurisdiction and one of Australia's most prolific lithium districts. Liontown's proximal Kathleen Valley Lithium Project commenced production mid-2024 and has offtake arrangements with LG, Ford and Tesla. Surface mapping and sampling shows the system continues onto the Mila Kathaleen Valley property.

Appendix 1: Complete assay intervals of mineralised zones with Significant Intersection Calculations and high-grade assays highlighted.

DRILLHOLE_ID	SAMPLEID	FROM- m	TO- m	Au ppm	WIDTH- m	@	GRADE Au g/t
MYARC195	872506	80	81	0.04			
MYARC195	872507	81	82	0.13			
MYARC195	872508	82	83	0.02			
MYARC195	872509	83	84	0.05			
MYARC195	872510	84	85	0.02			
MYARC195	872511	85	86	0.02			
MYARC195	872512	86	87	< 0.01			
MYARC195	872513	87	88	< 0.01			
MYARC195	872514	88	89	< 0.01			
MYARC195	872515	89	90	0.24			
MYARC195	872516	90	91	0.02			
MYARC195	872517	91	92	0.03			
MYARC195	872518	92	93	0.02			
MYARC195	872519	93	94	0.02			
MYARC195	872521	94	95	0.02			
MYARC195	872522	95	96	0.32			
MYARC195	872523	96	97	0.15			
MYARC195	872524	97	98	0.12			
MYARC195	872525	98	99	0.16			
MYARC195	872526	99	100	0.05			
MYARC195	872527	100	101	0.69	2	(a)	1.00
MYARC195	872528	101	102	1.30		Ĭ	
MYARC195	872529	102	103	0.10			
MYARC195	872530	103	104	0.01			
MYARC195	872531	104	105	0.02			
MYARC195	872532	105	106	0.04			
MYARC195	872533	106	107	< 0.01			
MYARC195	872534	107	108	< 0.01			
MYARC195	872535	108	109	< 0.01			
MYARC195	872536	109	110	< 0.01			
MYARC195	872537	110	111	0.04			
MARCIOS	070520	111	110	-A A1	i e	i i	

MYARC195	872538	111	112	<0.01	ĺ	1		ĺ
MYARC195	872539	112	113	< 0.01				
MYARC195	872540	113	114	< 0.01				
MYARC195	872541	114	115	0.03				
MYARC195	872542	115	116	0.01				
MYARC195	872543	116	117	0.10				
MYARC195	872544	117	118	5.19	1	(a)	5.19	
MYARC195	872545	118	119	0.04				
MYARC195	872546	119	120	0.69				
MYARC195	EXP539589	120	122	0.04				
MYARC195	EXP539590	122	124	0.01				
MYARC195	EXP539591	124	126	0.04				
MYARC195	EXP539592	126	128	6.44	2	a	6.44	
MYARC195	EXP539593	128	130	0.21				
MYARC195	EXP539594	130	132	0.03				
MYARC195	EXP539595	132	134	0.04				
MYARC195	EXP539596	134	136	0.05				
MYARC195	EXP539597	136	138	0.01				
MYARC195	EXP539598	138	140	0.03				
MYARC195	EXP539599	140	142	0.03				
MYARC195	EXP539600	142	144	0.02				
MYARC195	EXP539601	144	146	0.03				
MYARC195	EXP539602	146	148	0.03				
MYARC195	EXP539603	148	150	0.01				
MYARC195	EXP539604	150	152	0.02				
MYARC195	EXP539605	152	154	0.07				
MYARC195	EXP539606	154	156	0.01				
MYARC195	EXP539607	156	158	0.02				
MYARC195	EXP539608	158	160	0.01				

DDW LUCKE TO	SAMPLE FROM TO-			Au	WIDTH-		GRADE Au	DDW LVOVE D
DRILLHOLE_ID	ID	m	m	ppm	m	a	g/t	DRILLHOLE_ID
MYARC197	872785	0	1	0.04			Ú	
MYARC197	872786	1	2	0.03				
MYARC197	872787	2	3	0.03				
MYARC197	872788	3	4	0.02				
MYARC197	872789	4	5	0.02				
MYARC197	872791	5	6	0.07				
MYARC197	872792	6	7	0.05				
MYARC197	872793	7	8	0.07				
MYARC197	872794	8	9	0.17				
MYARC197	872795	9	10	0.11				
MYARC197	872796	10	11	0.04				
MYARC197	872797	11	12	16.45	11	a	2.91	
MYARC197	872798	12	13	1.52	1	a	16.45	incl
MYARC197	872799	13	14	3.87				
MYARC197	872800	14	15	0.27				
MYARC197	872801	15	16	0.38				
MYARC197	872802	16	17	0.56				
MYARC197	872803	17	18	0.4				
MYARC197	872804	18	19	0.31				
MYARC197	872805	19	20	5.75				
MYARC197	872806	20	21	2.01				
MYARC197	872807	21	22	0.45				
MYARC197	872808	22	23	0.36				
MYARC197	872809	23	24	0.27				
MYARC197	872810	24	25	0.13				
MYARC197	872811	25	26	0.27				
MYARC197	872812	26	27	0.42				
MYARC197	872813	27	28	0.41				
MYARC197	872814	28	29	0.26				
MYARC197	872815	29	30	0.15				
MYARC197	872816	30	31	0.09				
MYARC197	872817	31	32	0.05				
MYARC197	872818	32	33	39.1	1	(a)	39.1	
MYARC197	872819	33	34	0.22				
MYARC197	872821	34	35	0.17				
MYARC197	872822	35	36	0.04				
MYARC197	872823	36	37	0.03				
MYARC197	872824	37	38	0.03				
MYARC197	872825	38	39	0.02				
MYARC197	872826	39	40	0.49				
MYARC197	872827	40	41	0.03				
MYARC197	872828	41	42	0.3				
MYARC197	872829	42	43	9.25	17	a	5.47	

MYARC197	872830	43	44	0.34	1	a	9.25	incl
MYARC197	872831	44	45	2.83				
MYARC197	872832	45	46	0.52				
MYARC197	872833	46	47	0.17				
MYARC197	872834	47	48	0.08				
MYARC197	872835	48	49	0.33				
MYARC197	872836	49	50	0.6				
MYARC197	872837	50	51	0.72				
MYARC197	872838	51	52	7.33	8	a	9.76	incl
MYARC197	872839	52	53	1.51				
MYARC197	872840	53	54	5.95				
MYARC197	872841	54	55	47.4	1	a	47.40	and incl
MYARC197	872842	55	56	0.65				
MYARC197	872843	56	57	0.32				
MYARC197	872844	57	58	9.93				
MYARC197	872845	58	59	4.99				
MYARC197	872846	59	60	0.05				
MYARC197	872847	60	61	0.08				
MYARC197	872848	61	62	0.05				
MYARC197	872849	62	63	0.09			Ī	
MYARC197	872851	63	64	0.27				
MYARC197	872852	64	65	0.38				

DRILLHOLE ID	SAMPLE	FROM-	ТО-	Au	WIDTH-	0	GRADE Au	DRILLHOLE ID
DKILLHOLE_ID	ID	m	m	ppm	m	a	g/t	DKILLHOLE_ID
MYARC197	872853	65	66	0.22				
MYARC197	872854	66	67	0.44				
MYARC197	872855	67	68	0.04				
MYARC197	872856	68	69	0.1				
MYARC197	872857	69	70	0.17				
MYARC197	872858	70	71	0.07				
MYARC197	872859	71	72	0.09				
MYARC197	872860	72	73	0.09				
MYARC197	872861	73	74	0.02				
MYARC197	872862	74	75	0.05				
MYARC197	EXP539635	75	77	0.06				
MYARC197	EXP539636	77	79	0.01				
MYARC197	EXP539637	79	81	0.03				
MYARC197	EXP539638	81	83	0.01				
MYARC197	EXP539639	83	85	0.01				
MYARC197	EXP539640	85	87	0.07				
MYARC197	EXP539641	87	89	0.02				
MYARC197	EXP539642	89	91	0.04				
MYARC197	EXP539643	91	93	0.05				
MYARC197	EXP539644	93	95	0.05				
MYARC197	EXP539645	95	97	0.01				
MYARC197	EXP539646	97	99	0.06				
MYARC197	EXP539647	99	101	0.02				
MYARC197	EXP539648	101	103	0.02				
MYARC197	EXP539649	103	105	-0.01				
MYARC197	EXP539650	105	107	-0.01				
MYARC197	EXP539651	107	109	0.03				
MYARC197	EXP539652	109	111	0.01				
MYARC197	EXP539653	111	113	0.03				
MYARC197	EXP539654	113	115	-0.01				
MYARC197	EXP539655	130	132	0.04				
MYARC197	EXP539656	132	134	0.02				
MYARC197	EXP539657	134	136	0.04				
MYARC197	EXP539658	136	138	0.01				
MYARC197	EXP539659	138	140	0.01				
MYARC197	EXP539660	140	142	0.01				
MYARC197	EXP539661	142	144	0.01				
MYARC197	EXP539662	144	146	0.01				
MYARC197	EXP539663	146	148	0.02				
MYARC197	EXP539664	148	150	0.01				

 ${\it Cut-off grade\ of\ 0.3g/t\ Au\ and\ 2m\ internal\ dilution\ applied\ to\ intercepts.}$

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact msc.ucm.

RNS may use your IP address to confirm compliance with the terms and conditions, to analyse how you engage with the information contained in this communication, and to share such analysis on an anonymised basis with others as part of our commercial services. For further information about how RNS and the London Stock Exchange use the personal data you provide us, please see our <u>Privacy Policy</u>.

END

DRLPPURWAUPAUAG