

COBRA

THIS ANNOUNCEMENT CONTAINS INSIDE INFORMATION FOR THE PURPOSES OF ARTICLE 7 OF REGULATION 2014/596/EU WHICH IS PART OF DOMESTIC UK LAW PURSUANT TO THE MARKET ABUSE (AMENDMENT) (EU EXIT) REGULATIONS (SI 2019/310) ("UK MAR"). UPON THE PUBLICATION OF THIS ANNOUNCEMENT, THIS INSIDE INFORMATION (AS DEFINED IN UK MAR) IS NOW CONSIDERED TO BE IN THE PUBLIC DOMAIN.

NOT FOR RELEASE, PUBLICATION OR DISTRIBUTION, IN WHOLE OR IN PART, DIRECTLY OR INDIRECTLY IN OR INTO THE UNITED STATES, AUSTRALIA, CANADA, JAPAN, THE REPUBLIC OF SOUTH AFRICA OR ANY OTHER JURISDICTION WHERE TO DO SO WOULD CONSTITUTE A VIOLATION OF THE RELEVANT LAWS OF SUCH JURISDICTION.

17 November 2025

Cobra Resources plc
("Cobra" or the "Company")

Exceptional Results from In-Field Permeability Study

Results support high production potential for ISR of heavy rare earths from Boland mineralisation

Positioned to deliver some of the lowest costs for the recovery of heavy rare earths globally

Cobra (LSE: COBR) a South Australian mineral exploration and development company, is pleased to announce that field trials at the Company's Boland Ionic Heavy Rare Earth Project in South Australia have delivered **exceptional hydrological properties** that support the cost-efficient and low impact recovery of heavy rare earth elements ("REEs") through In Situ recovery ("ISR").

Field trials have confirmed the hydrological properties of the Boland aquifer and that geological conditions are conducive to ISR and support commerciality of future mining operations.

Highlights

- In-field Pump tests have proven that the ionic heavy rare earth mineralisation at Boland is contained in a laterally uniform permeable sand aquifer that is bounded above and below by impermeable aquiclude. This circumstance is not known to occur elsewhere in the world and it makes certain that the Boland mineralisation is amenable to recovery in solution form by ISR techniques
- This testwork has shown that ISR lixivants are efficiently contained within the mineralised aquifer and that the lixiviant will not move vertically into the overlying and underlying formations
- Pump testing yielded a sustainable discharge rate of 0.21 litres per second (approximately 18,000 litres per day) which is consistent with expectations raised by the results of recent bench scale recoveries of 66% Heavy Rare Earths ("HREO")
- Uniform borehole drawdown during pump testing established that there is good lateral connectivity within the Boland mineralised horizon. These circumstances are expected to result in efficient wellfield design and good mineralisation recovery characteristics
- A connectivity tracer test that involved the injection of water treated with a bromide dye showed excellent connectivity. At a 7 m inter-well spacing, bromide was observed in the extraction well after under 24 hours
- 60% of the bromide dye was recovered after four days. These results are consistent with Cobra's expectation that injected lixiviants will be efficiently circulated through the mineralised horizon to recover rare earth metals
- All the in-field test results are consistent with Cobra's expectation that the Boland rare earth mineralisation is amenable to recovery by ISR techniques

Follow this link to watch a short video of Managing Director Rupert Verco explaining the results of the trials: <https://investors.cobraplc.com/link/Pm51XP>

Rupert Verco, Managing Director of Cobra, commented:

"These field results have provided us the trifecta of technical requirements to enable sustainable and

These field results have provided us the metrics of technical requirements to enable sustainable and productive ISR: permeability, productive flowrates, and uniform connectivity. This, when coupled with our highly desirable metallurgy, sets the Boland Project apart from all other known ionic rare earth projects.

Results of this field study provide robust metrics to support the case for commercial development. Alongside our current flow sheet optimisation programme, we are well positioned to deliver some of the lowest costs for the recovery of heavy rare earths globally.

The test work just completed has significantly derisked the Boland Project's REE extraction parameters. The Company will now continue resource definition drilling, targeting a significant maiden resource estimate to support a scoping study by mid next year."

Context - Why is this so important?

Ionic Rare Earth deposits in Southern China are recovered by a form of ISR that relies on gravity to permeate the mineralised horizon. Acid injection is unconstrained, limiting mining control and introducing environmental risk through acid mine drainage.

Ionic clay projects outside of China are challenged by managing a trade-off between the cost-efficient treatment of clay mineralisation with environmental risk and operating efficiency.

The Boland Project has now been shown to face neither of the above challenges.

The Boland Project's geology is (thus far) unique in the world insofar as its mineralisation has now been shown to be amenable to ISR, the lowest cost and most sustainable form of mining.

The results from this study highlight the ability for Boland to deliver a risk-resilient source of dysprosium and terbium from a project that requires less capital and can be self-supporting by producing the materials required for operation.

Figure 1. Rare earths under the rainbow - Tracer study underway at the Boland Project

Boland Project

At Boland, Cobra has discovered what it believes to be a unique, scalable instance where ionic rare earth elements - containing economically attractive grades of valuable heavy and magnet rare earths - occur in a permeable horizon confined between horizons of impermeable clay.

Bench scale ISR testing has confirmed that this mineralisation is amenable to ISR recovery techniques. ISR techniques are currently in use (and have been used successfully for decades) in geologically similar environments, to recover uranium in South Australia which maintains a well-established ISR regulatory system.

Results of Cobra's ongoing mineral recovery test work indicate that, with minor optimisation, ISR techniques will enable non-invasive and low-cost production of critical REEs from its discovery at Boland.

Further information relating to Boland and these results are presented in the appendices.

Enquiries:

Cobra Resources plc
Rupert Verco (Australia)
Dan Maling (UK)

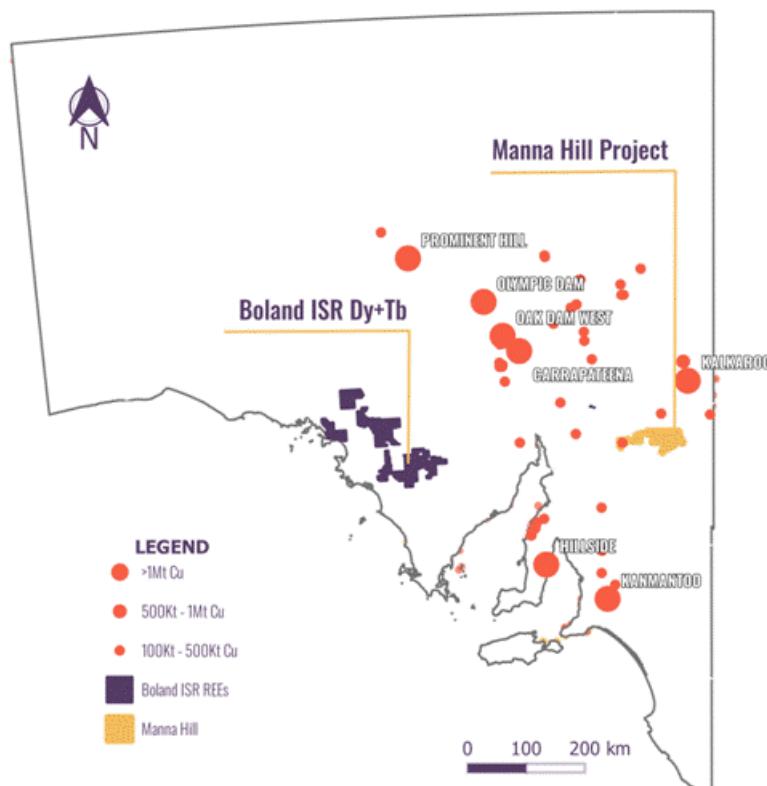
via Vigo Consulting
+44 (0)20 7390 0234

SI Capital Limited (Joint Broker)

+44 (0)1483 413 500

The person who arranged for the release of this announcement was Rupert Verco, Managing Director of the Company.

About Cobra


Cobra Resources is a South Australian critical minerals developer, advancing assets at all stages of the pre-production pathway.

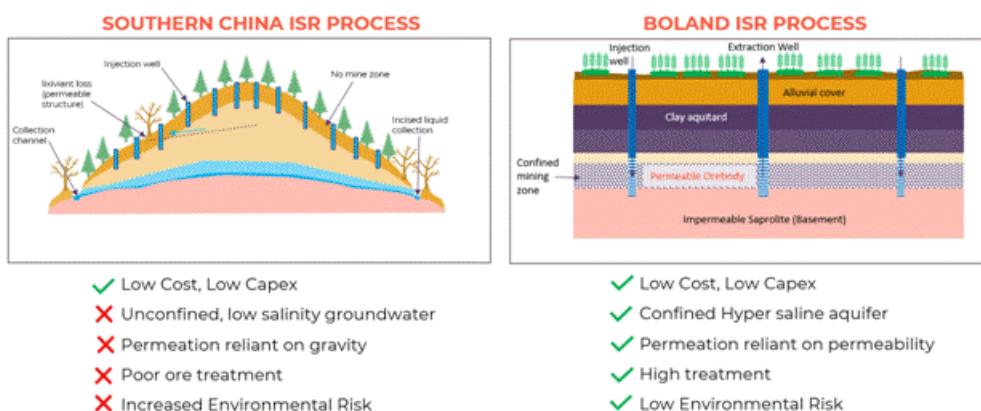
In 2023, Cobra identified the Boland ionic rare earth discovery at its Wudinna Project in the Gawler Craton - Australia's only rare earth project suitable for in situ recovery (ISR) mining. ISR is a low-cost, low-disturbance extraction method that eliminates the need for excavation, positioning Boland to achieve bottom-quartile recovery costs.

In 2025, Cobra further expanded its portfolio by optioning the Manna Hill Copper Project in the Nackara Arc, South Australia. The project contains multiple underexplored prospects with strong potential to deliver large-scale copper discoveries.

In 2025, Cobra sold its Wudinna Gold Assets to Barton Gold (ASX: BDG) for up to A 15 million in cash and shares.

Regional map showing Cobra's tenements in South Australia

Follow us on social media:


LinkedIn: <https://www.linkedin.com/company/cobraresourcesplc>
X: https://twitter.com/Cobra_Resources

Engage with us by asking questions, watching video summaries and seeing what other shareholders have to say. Navigate to our Interactive Investor hub here: <https://investors.cobraplccom/>

Appendix 1: Background information - the Boland Project and ISR

- The Boland Project was discovered by Cobra in 2023. Mineralisation is ionically bound to clays and organics within palaeochannel sands within the Narlaby Palaeochannel
- Mineralisation occurs within a permeable sand within an aquifer that is saltier than sea water and is confined by impermeable clays
- ISR is executed through engineered drillhole arrays that allow the injection of mildly acidic ammonium or magnesium sulphate lixivants, using the confining nature of the geology to direct and lower the acidity of the orebody. This low-cost process enables mines to operate profitably at lower grades and lower rates of recovery
- Once REEs are mobile in solution in groundwater, it is also possible, from an engineering standpoint, to recover the solution to surface via extraction drillholes, without any need for excavation or ground disturbance
- The capital costs of ISR mining are low as they involve no material movements and do not require traditional infrastructure to process ore - i.e. metals are recovered in solution
- Ionic mineralisation is highly desirable owing to its high weighting of valuable HREOs and the cost-effective method in which REEs can be desorbed
- Ionic REE mineralisation in China is mined in an in-situ manner that relies on gravity to permeate mineralisation. The style of ISR process is unconfined and cannot be controlled, increasing the risk for environmental degradation. This low-cost process has enabled China to dominate mine supply of HREOs, supplying over 90% globally
- Confined aquifer ISR is successfully executed globally within the uranium industry, accounting for more than 60% of the world's uranium production. This style of ISR has temporary ground disturbance, and the ground waters are regenerated over time
- Cobra is aiming to demonstrate the economic and environmental benefits of recovering ionic HREOs through the more environmentally aquifer controlled ISR - a world first for rare earths

Figure A1: Comparison between the Chinese and the proposed Boland process for ISR mining of REEs

Appendix 2: Results of field hydrology study

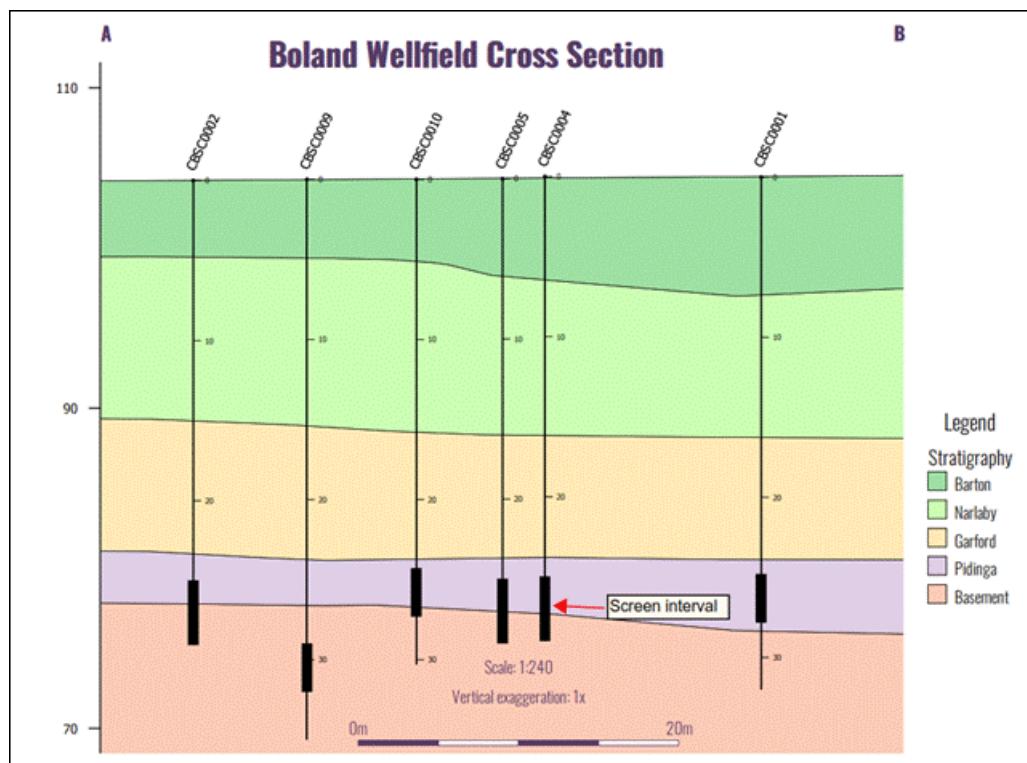
Rendement Principal Hydrogeologist, Ben Jeuken was engaged to perform hydrogeological tests at Boland that included an aquifer pumping test and a connectivity tracer test. The study has generated key hydrogeological characteristics of the deposit, such as hydraulic conductivity (permeability), storage coefficient, and the degree of confinement provided by the surrounding geological units above and below the mineralised zone. Methodology and testing results are presented below:

Pumping Test

Methodology

- A downhole pump was set in well CBSC0010. The pump was positioned at a depth of 25m. The static water level was at 4.5 m, giving available water level drawdown of approximately 20.5 m
- A pumping test was conducted comprising a constant rate step pumping at 13 m³/day for 0.33 days (8 hours) to determine aquifer properties.
- The pumping rate was incrementally increased up to 18 m³/day to determine the maximum capacity of the well. Water level drawdown was measured in five observation wells screened within the mineralised body, one well screened within each of the overlying confining bed, and the underlying saprolite

Results


- The pumping test demonstrated that the extraction well had the capacity to yield at a rate of up to 18 m³/day

- During the constant rate test, consistent drawdown was observed in all observation wells within mineralisation demonstrating relatively homogeneous aquifer properties
- Aquifer properties derived from analysis of the drawdown data are summarised in Table 1. The hydraulic conductivity of the mineralisation is 0.1 m/day, consistent with a fine sand.
- The drawdown response in the mineralized zone indicated a confined aquifer with very low leakage from the confining layers. The vertical conductivity of the overlying confining layer is estimated at 0.001 m/day. The monitoring well completed in the overlying Garford confining layer exhibited no drawdown at all, further demonstrating that the Garford formation is an effective confining layer
- The well completed in the underlying saprolite exhibited a very muted drawdown response. The hydraulic conductivity estimated from the drawdown data is approximately 0.002 m/day. This is some two orders of magnitude less than the hydraulic conductivity of the mineralisation. This indicates that the saprolite will be an effective confining layer beneath the ore

Table 1: Aquifer Properties

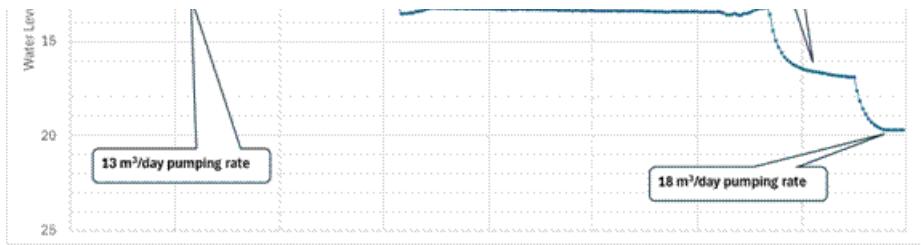

Formation	Observation well	Radius from pumped well	Max Drawdown	T	K	S	K'
				Transmissivity	Hydraulic conductivity	Storability	Confining layer Hydraulic conductivity
		m	m	m ² /day	m/day		m/day
Mineralised Horizon	CBSC0001	23	2.1	1.0	0.17	0.0001	0.0004
	CBSC0002	13	2.8	1.0	0.17	0.0003	0.0009
	CBSC0003	21	2.7	0.8	0.13	0.0001	0.0004
	CBSC0004	16	2.1	0.7	0.11	0.0003	0.0012
	CBSC0005	7	5.5	0.5	0.08	0.0003	0.0024
Geometric Mean				1	0.1	0.0002	0.001
Overlying Confining	CBAC0241	13	0	No response to pumping			
Underlying Confining	CBSC0009	14	0.2	0.01	0.002	0.0001	-

Figure A2: Cross section of the Boland Wellfield

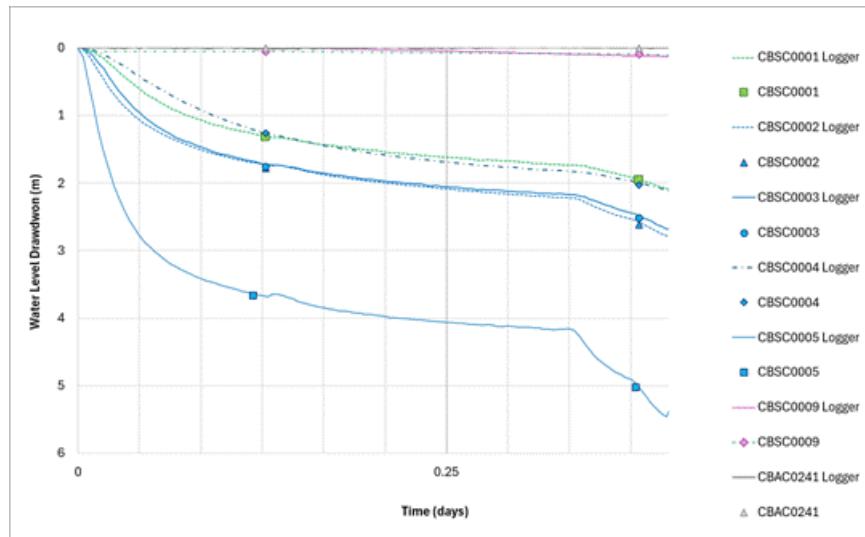
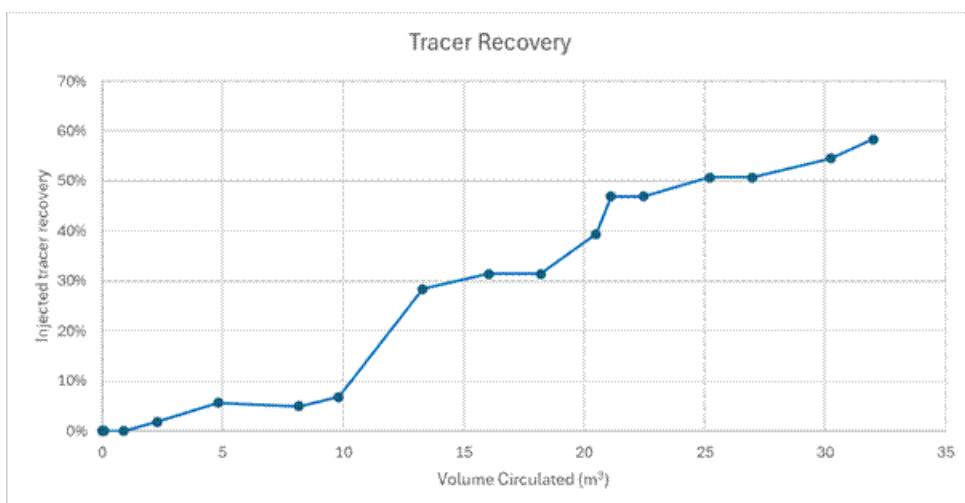


Figure A3: Water level drawdown in CBSC0010

Figure A4: Water level drawdown in observation wells

Connectivity Tracer Test


Methodology

- The connectivity tracer test comprised the extraction of water from well CBSC0005. The water was dosed with the tracer and then re-injected into CBSC0010 located 7 m from the extraction well. The test was undertaken over four days from 31/10/2025 to 4/11/2025

Results

- The total volume circulated during the trial was 32 m³
- The tracer was injected with an average bromide concentration of 280 mg/L against a natural background bromide concentration of 15 mg/L
- The recovery of the injected water was calculated from the concentration of bromide analysed in samples taken from the extraction well
- The data is shown in Figure 3 where data indicates good connection between the two wells completed in the mineralised horizon. Tracer arrival occurred after circulation of approximately 10 m³, within 24 hours, and the concentration of tracer at the extraction well continued to rise as the test progressed reaching a maximum concentration of 60% at the end of the test

Figure A5: Connectivity trial - tracer recovery

Conclusions

The results are extremely encouraging for ISR recovery of REE mineralisation at the Boland Prospect:

- Well yields of up to 18 m³/day and hydraulic properties give confidence that satisfactory leaching flow rates can be achieved, and this data will be used to design a field recovery trial
- The formations above and below the mineralised body provide effective confining seals. This is an optimal condition and gives confidence that the lixiviant can be efficiently contained within the mineralised horizon host aquifer and will not move vertically into overlying and underlying formations
- The efficient recovery of the tracer during the circulation trial gives confidence that injected lixiviant can be efficiently circulated through the mineralised Pidinga formation to leach the rare earths mineralisation and be recovered at the extraction well

Appendix 3: JORC Code, 2012 Edition - Table 3

Criteria	JORC Code explanation	Commentary
Sampling techniques	<ul style="list-style-type: none"> <i>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</i> <i>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</i> <i>Aspects of the determination of mineralisation that are Material to the Public Report.</i> <i>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</i> 	<p>Pre 2023</p> <ul style="list-style-type: none"> Historic Rotary Mud drilling targeting paleochannel hosted uranium was completed. Some residue samples were retained in the Tonsley Core Library, downhole geophysical logging was the primary data collected for these holes. Select historic sample residues over Boland were analysed as reported in RNS 1834M(26 April 2024) <p>2023</p> <p>Aircore</p> <ul style="list-style-type: none"> A combination of 2m and 3m samples were collected in green bags via a rig mounted cyclone. A PVC spear was used to collect a 2-4kg sub sample from each green bag. Sampling commenced from the collar point with samples submitted for analysis from the top of saprolite. Samples were submitted to Bureau Veritas Laboratories, Adelaide and pulverized to produce a 4-acid digest sample. <p>2024-2025</p> <p>SONIC</p> <ul style="list-style-type: none"> Drill results are outlined in RNS 0297I (25 March 2024) Core was scanned by a SciAps X555 pXRF to determine sample intervals. Intervals through mineralized zones were taken at 10cm. Through waste, sample intervals were lengthened to 50cm. Core was halved by knife cutting. XRF scan locations were taken on an inner surface of the core to ensure readings were taken on fresh sample faces. Samples were submitted to Bureau Veritas Laboratories, Adelaide and pulverized to produce a 4 acid digest sample. <p>Aircore</p> <ul style="list-style-type: none"> 1m sample intervals of 2-4 kg were taken via PVC spear from green bags at the rig. Select samples were submitted to the lab for analysis. From 0-6 m in each hole samples were composited to 3m. Samples were submitted to Bureau Veritas Laboratories, Adelaide and pulverized to produce a 4 acid digest sample.
Drilling techniques	<ul style="list-style-type: none"> <i>Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other tool, whether core is oriented</i> 	<p>Pre 2023</p> <ul style="list-style-type: none"> Drill methods include Rotary Mud and AC <p>2023</p> <ul style="list-style-type: none"> Drilling completed by McLeod Drilling Pty

	<p>or other type, whether core is oriented and if so, by what method, etc.</p>	<p>Ltd using 75.7mm NQ air core drilling techniques from an ALMET aircore rig mounted on a Toyota Landcruiser 6x6 and a 200psi, 400cfm Sullair compressor.</p>
		<p>2024-2025</p> <ul style="list-style-type: none"> Sonic Core drilling completed Star Drilling using 4" core with a SDR12 drill rig. Holes were reamed to 6" or 8" to enable casing and screens to be installed Aircore Drilling completed by McLeod Drilling Pty Ltd using 75.7mm NQ air core drilling techniques from an ALMET aircore rig mounted on a Toyota Landcruiser 6x6 and a 200psi, 400cfm Sullair compressor.
Drill sample recovery	<ul style="list-style-type: none"> Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	<ul style="list-style-type: none"> Aircore Sample recovery is good for the style of drilling. All samples were recorded for sample type, quality and contamination potential and entered within a sample log. In general, sample recoveries range between 5-10kg for each 1 m interval being recovered from AC drilling. Mineralisation occurs within a confined aquifer where ground water does influence sample recovery Mineralisation within the targeted Pidina Formation is bound to fine, organic rich material, the potential loss of mineralized material from coarser host sands is possible Any grade bias is expected to be grade loss The potential loss of fine material is being evaluated by sizing fraction analysis and follow-up sonic core drilling where aircore holes will be twinned. <p>Sonic Core</p> <p>Sample recovery is considered excellent.</p>
Logging	<ul style="list-style-type: none"> Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	<ul style="list-style-type: none"> All drill samples were logged by a qualified geologist at the time of drilling. Lithology, colour, weathering and moisture were documented. All core drilled has been lithologically logged. All Aircore drill metres have been geologically logged on sample intervals (1-3 m). All Sonic Core drill metres have been logged to lithological boundaries.
Sub-sampling techniques and sample preparation	<ul style="list-style-type: none"> If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	<p>Pre 2023</p> <ul style="list-style-type: none"> Historic Residue samples were generally 2m composites and were stored at the South Australian Drill Core Reference Library at Tonsley, a subsample of approximately 20g was removed for lab submission. Select samples of geological interest were selected for lab submission No QAQC samples were included in the submission of these samples. Sample results were intended to indicate mineralisation potential but would not be suitable for resource estimation <p>Post 2023</p> <ul style="list-style-type: none"> A PVC spear was used to collect 2-4kg of sub-sample from each AC sample length controlled the sample volume submitted to the lab. Additional sub-sampling was performed through the preparation and processing of samples according to the Bureau Veritas internal protocols. Field duplicate AC samples were collected from the green bags using a PVC spear scoop at a 1 in 25 sample frequency. Sample sizes are considered appropriate

	<p>for the material being sampled.</p> <p>Assessment of duplicate results indicated this sub - sample method provided appropriate repeatability for rare earths.</p> <p>Sonic Drilling</p> <ul style="list-style-type: none"> Field duplicate samples were taken nominally every 1 in 25 samples where the sampled interval was quartered. Blanks and Standards were submitted every 25 samples Half core samples were taken where lab geochemistry sample were taken in 2024. For 2025 drilling, quarter core was submitted to the lab for geochemical testing. In holes where only column leach test samples have been submitted, full core samples have been submitted. In holes where geochemical samples were submitted three quarter core samples were submitted for column leach testing..
Quality of assay data and laboratory tests	<ul style="list-style-type: none"> The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. <p>Samples were submitted to Bureau Veritas, Adelaide for preparation and analysis. Multi-element geochemistry were digested by four acid ICP-MS/ ICP-OES and analysed for Ag, Ce, Cu, Dy, Er, Eu, Gd, Ho, La, Lu, Mg, Na, Nd, P, Pr, Sc, Sm, Tb, Th, Tm, U, Y and Yb.</p> <ul style="list-style-type: none"> Field rare earth standards were submitted at a frequency of 1 in 25 samples. Field duplicate samples were submitted at a frequency of 1 in 25 samples. Reported assays pass the companies implemented QAQC database reports Internal lab blanks, standards and repeats for rare earths indicated acceptable assay accuracy. <p>Sample Characterisation Test Work performed by the Australian Nuclear Science and Technology Organisation (ANSTO)</p> <ul style="list-style-type: none"> Full core samples were submitted to Australian Nuclear Science and Technology Organisation (ANSTO), Sydney for preparation and analysis. The core was split in half along the vertical axis, and one half further split into 10 even fractions along the length of the half-core. Additional sub-sampling, homogenisation and drying steps were performed to generate ~260 g (dry equivalent) samples for head assay according to the laboratory internal protocols. Multi element geochemistry of solid samples were analysed at ANSTO (Sydney) by XRF for the major gangue elements Al, Ca, Fe, K, Mg, Mn, Na, Ni, P, Si, S, and Zn. Multi element geochemistry of solid samples were additionally analysed at ALS Geochemistry Laboratory (Brisbane) on behalf of ANSTO by lithium tetraborate digest ICP-MS and analysed for Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Nd, Pr, Sm, Tb, Th, Tm, U, Y and Yb. Reported assays are to acceptable levels of accuracy and precision. Internal laboratory blanks, standards and repeats for rare earths indicated acceptable assay accuracy. Samples retained for metallurgical analysis were immediately vacuum packed, nitrogen purged and refrigerated. These samples were refrigerated throughout transport.

	<p>Metallurgical leach test work performed by the Australian Nuclear Science and Technology Organisation (ANSTO)</p> <ul style="list-style-type: none"> ANSTO laboratories prepared ~80g samples for diagnostic leaches, a 443g sample for a slurry leach and a 660g sample for a column leach. Sub-samples were prepared from full cores according to the laboratory internal protocols. Diagnostic and slurry leaching were carried out in baffled leach vessels equipped with an overhead stirrer and applying a 0.5 M (NH4)2SO4 lixiviant solution, adjusted to the select pH using H2SO4. 0.5 M H2SO4 was utilised to maintain the test pH for the duration of the test, if necessary. The acid addition was measured. Thief liquor samples were taken periodically. At the completion of each test, the final pH was measured, the slurry was vacuum filtered to separate the primary filtrate. The thief samples and primary filtrate were analysed as follows: <ul style="list-style-type: none"> ICP-MS for Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Mn, Nd, Pb, Pr, Sc, Sm, Tb, Th, Tm, U, Y, Yb. ICP-OES for Al, Ca, Fe, K, Mg, Mn, Na, Si. The water wash was stored but not analysed. Column leaching was carried out in horizontal leaching column. The column was pressurised with nitrogen to 6 bar and submerged in a temperature controlled bath. A 0.5 M (NH4)2SO4 lixiviant solution, adjusted to the select pH using H2SO4 was fed to the column at a controlled flowrate. PLS collected from the end of the column was weighed, the SH and pH measured and the free acid concentration determined by titration. Liquor samples were taken from the collected PLS and analysed as follows: <ul style="list-style-type: none"> ICP-MS for Ce, Dy, Er, Eu, Gd, Ho, La, Lu, Mn, Nd, Pb, Pr, Sc, Sm, Tb, Th, Tm, U, Y, Yb. ICP-OES for Al, Ca, Fe, K, Mg, Mn, Na, Si. The column leach test has been completed. Assays of the column have adjusted head grades of the initial bench scale study. Recoveries have been adjusted accordingly.
<p>Verification of sampling and assaying</p>	<ul style="list-style-type: none"> The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. <ul style="list-style-type: none"> Sampling data was recorded in field books, checked upon digitising and transferred to database. Geological logging was undertaken digitally via the MX Deposit logging interface and synchronised to the database at least daily during the drill programme. Compositing of assays was undertaken and reviewed by Cobra Resources staff. Original copies of laboratory assay data are retained digitally on the Cobra Resources server for future reference. Samples have been spatially verified through the use of Datamine and Leapfrog geological software for pre 2021 and post 2021 samples and assays. Twinned drillholes from pre 2021 and post 2021 drill programs showed acceptable spatial and grade repeatability. Physical copies of field sampling books are retained by Cobra Resources for future reference. Significant intersections have been prepared by Mr Robert Blythman and reviewed by Mr Runert Veron

		Reviewed by: M. Report Verco
Location of data points	<ul style="list-style-type: none"> Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	<p>2021-2023</p> <ul style="list-style-type: none"> Collar locations were initially surveyed using a mobile phone utilising the Avenza Map app. Collar points recorded with a GPS horizontal accuracy within 5 m. RC Collar locations were picked up using a Leica CS20 base and Rover with an instrument precision of 0.05 cm accuracy. Locations are recorded in geodetic datum GDA94 zone 53. No downhole surveying was undertaken on AC holes. All holes were set up vertically and are assumed vertical. RC holes have been down hole surveyed using a Reflex TN-14 true north seeking downhole survey tool or Reflex multishot Downhole surveys were assessed for quality prior to export of data. Poor quality surveys were downgraded in the database to be excluded from export. All surveys are corrected to MGA 94 Zone 53 within the MX Deposit database. Cased collars of sonic drilling shall be surveyed before a mineral resource estimate <p>2024 Aircore</p> <ul style="list-style-type: none"> Collar locations were initially surveyed using A mobile phone GPS utilising the Avenza Map app. Collar points recorded with a horizontal accuracy within 5m. Locations are recorded in geodetic datum GDA94 zone 53. No downhole surveying was undertaken on AC or Sonic holes. All holes were set up vertically and are assumed vertical. Higher accuracy GPS will be undertaken on sonic core drilling to support future resource estimates
Data spacing and distribution	<ul style="list-style-type: none"> Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	<ul style="list-style-type: none"> Drillhole spacing was designed on transects 200 to 500m apart. Additional scouting holes were drilled opportunistically on existing tracks at spacings 25-150 m from previous drillholes. Sonic core holes were drilled at ~20m spacings in a wellfield configuration based on assumed permeability potential of the intersected geology Drillhole spacing is not expected to introduce any sample bias. Assessment of the drillhole spacing for resource estimation will be made once a sufficient data set can provide statistical analysis
Orientation of data in relation to geological structure	<ul style="list-style-type: none"> Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	<ul style="list-style-type: none"> Aircore and Sonic drill holes are vertical.
Sample security	<ul style="list-style-type: none"> The measures taken to ensure sample security. 	<ul style="list-style-type: none"> Transport of samples to Adelaide was undertaken by a competent independent contractor. Samples were packaged in zip tied polyweave bags in bundles of 5 samples at the drill rig and transported in larger bulk bags by batch while being transported. Refrigerated transport of samples to Sydney was undertaken by a competent independent contractor. Samples were double bagged, vacuum sealed, nitrogen purged and placed within PVC piping. There is no suspicion of tampering of samples.
Audits or reviews	<ul style="list-style-type: none"> The results of any audits or reviews of data. 	<ul style="list-style-type: none"> No laboratory audit or review has been

Appendix 3: Section 2 reporting of exploration results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	<ul style="list-style-type: none"> Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	<ul style="list-style-type: none"> Boland is located on EL5953, currently owned 100% by Peninsula Resources limited, a wholly owned subsidiary of Andromeda Metals Limited. In 2024, Cobra through its subsidiary Lady Alice Mines purchased the remaining ownership of the Wudinna Project tenements. An application through partial surrender is currently with the South Australian Government which will see LAMs the 100% owner of areas of the Wudinna Project. Alcrest Royalties Australia Pty Ltd retains a 1.5% NSR royalty over future mineral production from licenses EL6001, EL5953, EL6131, EL6317 and EL6489. A Native Title Agreement is in place with the Barngarla people. Aboriginal heritage surveys have been completed over EL5953, with no sites located in the immediate vicinity of aircore drilling
Exploration done by other parties	<ul style="list-style-type: none"> Acknowledgment and appraisal of exploration by other parties. 	<ul style="list-style-type: none"> On-ground exploration completed prior to Andromeda Metals' work was limited to 400 m spaced soil geochemistry completed by Newcrest Mining Limited over the Barns prospect. Other than the flying of regional airborne geophysics and coarse spaced ground gravity, there has been no recorded exploration in the vicinity of the Baggy Green deposit prior to Andromeda Metals' work. Paleochannel uranium exploration was undertaken by various parties in the 1980s and the 2010s around the Boland Prospect. Drilling was primarily rotary mud with downhole geophysical logging the primary interpretation method.
Geology	<ul style="list-style-type: none"> Deposit type, geological setting and style of mineralisation. 	<ul style="list-style-type: none"> Target mineralisation is ionic rare earth mineralisation that occurs primarily within the Pidina Formation within the Narlaby Palaeochannel, immediately above REE enriched Hiltaba Suite Granites Ionic REE mineralisation also occurs in and adjacent to the Garford formation clays and silty sands. Significant chemical (pH & eH) differences exist between underlying saprolite and overlying Palaeochannel sediments. REEs are absorbed to reduced organics found within the Pidina Formation Benchtop metallurgy studies indicate ISR amenability of rare earths within the Pidina Formation basal sands summarized in RNS 1285Q (16 December 2024)

	<ul style="list-style-type: none"> Ionic REE mineralisation is confirmed through metallurgical desorption testing where high recoveries are achieved at benign acidities (pH4-3) at ambient temperature. QEMSCAN and petrology analysis support REE ionic mineralisation, with little to no secondary phases identified. Ionic REE mineralisation occurs in reduced clay intervals that contact both saprolite and permeable sand units. Mineralisation contains variable sand quantities that yield permeability and promote in-situ recovery potential Mineralisation is located within a confined aquifer 																																																				
Drillhole Information	<ul style="list-style-type: none"> A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul style="list-style-type: none"> <i>easting and northing of the drill hole collar</i> <i>elevation or RL (Reduced Level - elevation above sea level in metres) of the drill hole collar</i> <i>dip and azimuth of the hole</i> <i>down hole length and interception depth</i> <i>hole length.</i> <i>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</i> 	<ul style="list-style-type: none"> Exploration results being reported represent a small portion of the Boland target area. Coordinates for Wellfield drill holes are presented in Table X. 																																																			
Data aggregation methods	<ul style="list-style-type: none"> <i>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</i> <i>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</i> <i>The assumptions used for any reporting of metal equivalent values should be clearly stated.</i> 	<ul style="list-style-type: none"> Reported summary intercepts are weighted averages based on length. No maximum/ minimum grade cuts have been applied. No metal equivalent values have been calculated. Rare earth element analyses were originally reported in elemental form and have been converted to relevant oxide concentrations in line with industry standards. Conversion factors tabulated below: <table border="1"> <thead> <tr> <th>Element</th> <th>Oxide</th> <th>Factor</th> </tr> </thead> <tbody> <tr> <td>Cerium</td> <td>CeO₂</td> <td>1.2284</td> </tr> <tr> <td>Dysprosium</td> <td>Dy₂O₃</td> <td>1.1477</td> </tr> <tr> <td>Erbium</td> <td>Er₂O₃</td> <td>1.1435</td> </tr> <tr> <td>Europium</td> <td>Eu₂O₃</td> <td>1.1579</td> </tr> <tr> <td>Gadolinium</td> <td>Gd₂O₃</td> <td>1.1526</td> </tr> <tr> <td>Holmium</td> <td>Ho₂O₃</td> <td>1.1455</td> </tr> <tr> <td>Lanthanum</td> <td>La₂O₃</td> <td>1.1728</td> </tr> <tr> <td>Lutetium</td> <td>Lu₂O₃</td> <td>1.1371</td> </tr> <tr> <td>Neodymium</td> <td>Nd₂O₃</td> <td>1.1664</td> </tr> <tr> <td>Praseodymium</td> <td>Pr₆O₁₁</td> <td>1.2082</td> </tr> <tr> <td>Scandium</td> <td>Sc₂O₃</td> <td>1.5338</td> </tr> <tr> <td>Samarium</td> <td>Sm₂O₃</td> <td>1.1596</td> </tr> <tr> <td>Terbium</td> <td>Tb₄O₇</td> <td>1.1762</td> </tr> <tr> <td>Thulium</td> <td>Tm₂O₃</td> <td>1.1421</td> </tr> <tr> <td>Yttrium</td> <td>Y₂O₃</td> <td>1.2699</td> </tr> <tr> <td>Ytterbium</td> <td>Yb₂O₃</td> <td>1.1387</td> </tr> </tbody> </table>	Element	Oxide	Factor	Cerium	CeO ₂	1.2284	Dysprosium	Dy ₂ O ₃	1.1477	Erbium	Er ₂ O ₃	1.1435	Europium	Eu ₂ O ₃	1.1579	Gadolinium	Gd ₂ O ₃	1.1526	Holmium	Ho ₂ O ₃	1.1455	Lanthanum	La ₂ O ₃	1.1728	Lutetium	Lu ₂ O ₃	1.1371	Neodymium	Nd ₂ O ₃	1.1664	Praseodymium	Pr ₆ O ₁₁	1.2082	Scandium	Sc ₂ O ₃	1.5338	Samarium	Sm ₂ O ₃	1.1596	Terbium	Tb ₄ O ₇	1.1762	Thulium	Tm ₂ O ₃	1.1421	Yttrium	Y ₂ O ₃	1.2699	Ytterbium	Yb ₂ O ₃	1.1387
Element	Oxide	Factor																																																			
Cerium	CeO ₂	1.2284																																																			
Dysprosium	Dy ₂ O ₃	1.1477																																																			
Erbium	Er ₂ O ₃	1.1435																																																			
Europium	Eu ₂ O ₃	1.1579																																																			
Gadolinium	Gd ₂ O ₃	1.1526																																																			
Holmium	Ho ₂ O ₃	1.1455																																																			
Lanthanum	La ₂ O ₃	1.1728																																																			
Lutetium	Lu ₂ O ₃	1.1371																																																			
Neodymium	Nd ₂ O ₃	1.1664																																																			
Praseodymium	Pr ₆ O ₁₁	1.2082																																																			
Scandium	Sc ₂ O ₃	1.5338																																																			
Samarium	Sm ₂ O ₃	1.1596																																																			
Terbium	Tb ₄ O ₇	1.1762																																																			
Thulium	Tm ₂ O ₃	1.1421																																																			
Yttrium	Y ₂ O ₃	1.2699																																																			
Ytterbium	Yb ₂ O ₃	1.1387																																																			

	<ul style="list-style-type: none"> The reporting of REE oxides is done so in accordance with industry standards with the following calculations applied: <ul style="list-style-type: none"> $TREO = La2O3 + CeO2 + Pr6O11 + Nd2O3 + Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3$ $LREO = La2O3 + CeO2 + Pr6O11 + Nd2O3$ $HREO = Sm2O3 + Eu2O3 + Gd2O3 + Tb4O7 + Dy2O3 + Ho2O3 + Er2O3 + Tm2O3 + Yb2O3 + Lu2O3 + Y2O3$ $MREO = Nd2O3 + Pr6O11 + Tb4O7 + Dy2O3$ $NdPr = Nd2O3 + Pr6O11$ $TREO-Ce = TREO - CeO2$ $\% Nd = Nd2O3 / TREO$ $\% Pr = Pr6O11 / TREO$ $\% Dy = Dy2O3 / TREO$ $\% HREO = HREO / TREO$ $\% LREO = LREO / TREO$ XRF results are used as an indication of potential grade only. Due to detection limits only a combined content of Ce, La, Nd, Pr & Y has been used. XRF grades have not been converted to oxide. 	
Relationship between mineralisation widths and intercept lengths	<ul style="list-style-type: none"> These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	<ul style="list-style-type: none"> Preliminary results support unbiased testing of mineralised structures. Most intercepts are vertical and reflect true width intercepts. Follow-up sonic drilling is planned to delineate portions of the reported intersections that are recoverable and unrecoverable via ISR
Diagrams	<ul style="list-style-type: none"> Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	<ul style="list-style-type: none"> Relevant diagrams have been included in the announcement. Exploration results are not being reported for existing mineral resources. Drilling is aimed at defining new mineral resources.
Balanced reporting	<ul style="list-style-type: none"> Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practised to avoid misleading reporting of Exploration Results. 	<ul style="list-style-type: none"> REE mineralization occurs in several phases, primary phase mineralisation occurs within the Pidinga Formation which is amenable to ISR recovery and the Garford Formation, REO values within both of these formations have been reported. Mineralisation occurring within the saprolite is considered secondary phase mineralisation.
Other substantive exploration data	<ul style="list-style-type: none"> Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples - size and method of treatment; metallurgical test results; bulk density; groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	<ul style="list-style-type: none"> Refer to previous announcements listed in RNS for reporting of REE results and metallurgical testing
Further work	<ul style="list-style-type: none"> The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	<ul style="list-style-type: none"> ISR study 1 was performed to achieve a pH 3 whilst ISR study 2 was performed at a pH of 3. Future metallurgical testing will focus on producing PLS under leach conditions to conduct downstream bench-scale studies for impurity removal and product precipitation. Hydrology, permeability and mineralogy studies are being performed on core samples

Samples.

- Installed wells are being used to capture hydrology base line data to support a future infield pilot study.
- Trace line tests shall be performed to emulate bench scale pore volumes.

This information is provided by RNS, the news service of the London Stock Exchange. RNS is approved by the Financial Conduct Authority to act as a Primary Information Provider in the United Kingdom. Terms and conditions relating to the use and distribution of this information may apply. For further information, please contact ms@lseg.com or visit www.rns.com.

RNS may use your IP address to confirm compliance with the terms and conditions, to analyse how you engage with the information contained in this communication, and to share such analysis on an anonymised basis with others as part of our commercial services. For further information about how RNS and the London Stock Exchange use the personal data you provide us, please see our [Privacy Policy](#).

END

DRLGPGUWGUPAUQM