“国六”切换，2020-2025年后处理产业链迎五千亿增量市场

投资要点
- 移动源在成为污染源控制重点，柴油货车成为 NOx、颗粒物排放“主战场”。空气质量每年都会造成严重的健康问题和经济损失，我国当前在 PM10、SO2 等排放控制上取得不错成绩，但在 NOx、PM2.5 等控制上还有待提高。移动源在主要空气污染物 NOx、HC 和 PM 颗粒物等污染物中贡献率分别为 52%、16% 和 30% 以上，其中柴油货车在移动源 PM、NOx 排放的分担率超 80%，因此移动源控制移动源，特别是柴油货车，成为治理大气污染的关键。
- 史上最严“国六”全面升级尾气后处理系统并提升用尿素用量。“国六”已在部分地区和车型率先实施，预计 2021 年全面铺开，其在尾气排放指标，补贴力度、监管强度等方面空前严格。尾气处理产业链主要包括尾气处理系统和尿素系统，前者市场规模将达 2020-2025 六年合计市场规模达 3434 亿元，其中 2020 年车用尿素需求量将达 59.7 亿元，年均增量超 2484 亿元，年均复合增长 10.16%，年均增速达 307 亿元。国内厂商在 SCR 尾气处理系统市场集中度较高，CR5 市占率的提升将提升汽油机后处理系统单车价值量增幅一倍以上；柴油车市占率全面落后 EGR+DOC+DPF+SOC+ASC 路径，单年用量面临翻倍压力。据草根调研数据，随着驾驶性能限制和监管加强，“国六”车用尿素燃油消耗降至占和普及率将较“国五”显著提升，预计“国六”柴油货车车用尿素用量将接近“国五”车销量三倍。
- 2025 年柴油机汽车尾气后处理系统市场分别达 600/578 亿元。据测算，柴油机尾气处理系统 2020-2025 六年合计市场规模达 3439 亿元，其中 1963 亿元属于“国六”标准带来的增量市场，年均增量超 300 亿元。柴油货车尾气处理系统 2020-2025 六年合计市场规模达 3434 亿元，其中 2484 亿元为增量市场，年均增速超 400 亿元。目前国内厂商在 DPF、DOC 领域市占率较高，SCR、TWC、后处理载体等领域国产替代空间广阔。
- 车用尿素 2025 年市场规模达 524 亿元，高品质龙头市占率有望提升。“国六”实施后，车用尿素将成为车用的必需品，重卡司机单车年均尿素花费约 8400 元。我们测算，2025 年车用尿素需求量将达 2909 万吨，为 19 年用量的 7.3 倍左右，车用尿素市场规模将达 524 亿元。2020-2025 年车用尿素因“国六”实施带来的增量市场规模达 3434 亿元，其中 2484 亿元为增量市场，年均增速超 400 亿元。目前国内厂商在 DPF、DOC 领域市占率较高，SCR、TWC、后处理载体等领域国产替代空间广阔。
- 投资推荐：重点推荐国内高品质车用尿素龙头厂商龙蟠科技（603906）：国内率先 SCR 尾气处理系统龙头艾可蓝（300654），建议关注国内 EGR 领军企业银轮股份（000126）、隆盛科技（300680）、DFP 龙头威派格科（000581）；重卡 SCR 龙头凯龙高科（拟上市）；蜂窝陶瓷材料（后处理载体）国产替代标的奥福环保（688021）、国瓷材料（300285）。
- 风险提示：汽车销量下滑、政策落地低预期、“国六”后处理技术路径变化。
目 录

1 复盘：机动车国标更新提速改善空气质量，史上最严“国六”已经到来..1
 1.1 空气污染已成为第四大健康“杀手”，间接经济损失影响占 GDP 超 6%..1
 1.2 移动源尾气空气污染分担率居前，NOx 排放较多的柴油货车成为管控重点..............................2
 1.3 机动车排放国标成为空气污染治理利器，“国六”成为史上最严国标...9

2 测算：“国六”新标下，2020-2025 年尿素累计市场增量达千亿，后处理系统增量市场超四千亿20
 2.1 尾气后处理产业链：后处理系统增长空间确定，车用尿素自带消费属性..................................20
 2.2 尾气处理系统：“国六”标准下迎来全面升级，2020-25 合计增量市场超四千亿.................28
 2.3 车用尿素：“国六”尿素单车用量与普及率全面提升，2025 年尿素市场规模为 19 年 7.3 倍........32

3 格局：后处理系统迎接国产替代，尿素市场龙头市占率不断提升 ..36
 3.1 后处理系统：SCR 等各细分领域国产龙头推进国产替代 ...36
 3.2 车用尿素：“国六”提升高质量车用尿素市场份额，品质龙头龙蟠科技受益..........................38

4 投资推荐 ..41
 4.1 龙蟠科技：品牌+渠道铸就车用尿素龙头，扩产推动公司市占率提升.................................41
 4.2 艾可蓝：本土轻卡 SCR 龙头，有望受益于国六替代和“国六”标准普及.................................43
 4.3 奥福环保：蜂窝陶瓷载体龙头，打破 NGK、康宁等国外龙头垄断..45
 4.4 国瓷材料：陶瓷材料平台型公司，蜂窝陶瓷迎来放量...46
 4.5 威孚高科：DPF 国内龙头，产品均衡覆盖后处理各类系统...47
 4.6 银轮股份：热管理龙头，内生外延布局后处理市场...48
 4.7 隆盛科技：轻型商用车 EGR 龙头...49
 4.8 凯龙高科：重卡 SCR 龙头，创业板即将上市..50

5 风险提示 ..50

请务必阅读正文后的重要声明部分
图 目 录

图 1：全世界 1/10 的死亡可以归咎于空气污染...1
图 2：大气污染导致的过早死亡病例 90%发生在发展中国家 ..1
图 3：空气污染可对经济造成多种损失...2
图 4：2019 年我国空气质量达标城市占比 46.6%，仍有提升空间..2
图 5：2013 年以来“雾霾”关键词的百度新闻指数开始突增，近几年有所下降.....................3
图 6：2019 年 337 地级市空气质量达标天数比例超 80%..4
图 7：2013 年以来各项空气污染物逐步得到控制（单位:ug/m3）.................................4
图 8：剔除季风影响，NOx 排放量有待进一步下降（单位:ug/m3）.................................4
图 9：移动源包括机动车和非道路移动机械..5
图 10：移动源占京津冀及周边城市(2+26 城市)SO2 排放量 4%5
图 11：移动源占京津冀及周边城市(2+26 城市)NOx 排放量 16%5
图 12：移动源占京津冀及周边城市(2+26 城市)NO2 排放量 52%5
图 13：2018 年移动源占主要城市 PM2.5 排放量 30%左右 ...5
图 14：汽车 CO、HC、NOx 和 PM 排放合计超移动源的 90%...6
图 15：柴油货车为移动源中氯气污染物、颗粒物主要排放者..6
图 16：NOx 排放量随氮气浓度提升而升高..7
图 17：2019 年乘用车(小型客车)产量中柴油机占比达 93%..8
图 18：2018 年 67%的新货车配备柴机油...8
图 19：2019 年小型客车贡献移动源 CO2 排放量 65%...8
图 20：2019 年小型客车贡献移动源 HC 排放量 71%...8
图 21：2019 年重型货车贡献移动源 NOx 排放量 74%...8
图 22：2019 年重型货车贡献移动源 PM 排放量 52.4%...8
图 23：“国六”将促进 NOx 和 61.7%的 PM 排放..9
图 24：2018 年柴油货车中“国三”占比 47.5%..9
图 25：柴油货车是 NOx 和 PM 颗粒物排放的重点..9
图 26：我国尾气排放标准不断进步...10
图 27：欧洲现行的 Euro 6c 标准于 2018-2019 年实施，与“国六 a”实施时间相近..........10
图 28：重型柴汽车 NOx、PM 颗粒物排放限制为“国六”之最.....................................13
图 29：轻型汽油 NOx、PM 也有明显降幅..13
图 30：尾气后处理产业链主要包括尾气后处理系统和车用尿素..................................20
图 31：汽车产量影响后处理系统成长，柴油车保有量影响车用尿素成长....................21
图 32：TWC 三元催化器是同时处理 HC、CO 和 NOx..21
图 33：“国六”标准要求柴油机采取 DOC+DPF+SCR+ASC 模式..................................22
图 34：“国六”将促进 EGR 漏气率进一步提高..23
图 35：SCR 专门用于处理柴油机 NOx 排放，搭配车用尿素使用.................................24
图 36：DOC 主要功能用于处理 CO、HC 和部分 PM 颗粒物..24
图 37：DPF 主要用于捕捉 PM 颗粒物..25
图 38：后处理系统产业链涉及公司众多..27
图 39：车用尿素(AdBlue)结合 SCR 系统可大幅降低 NOx 排放..................................27
图 40：车用尿素在 SCR 系统中发生的化学反应

图 41：EGR 市场集中度高，隆盛科技成为本土 EGR 龙头

图 42：2017 年国产 DPF 市占率约 60%，威孚力达市占率第一

图 43：2017 年博世为 DOC 龙头，国产厂商竞争相对分散

图 44：2017 年凯龙高科重卡 SCR 市占率 13.9%

图 45：2017 年艾可蓝轻卡 SCR 市占率 12.3%

图 46：2017 年艾可蓝轻卡 SCR 市占率 12.3%

图 47：目前 30 元/10kg 以下的中低端尿素为销售主力（单位：元/10kg）

图 48：“欧四”标准实施后，欧洲车用尿素加注站猛增

图 49：可兰素品质认可度排名车用尿素市场第一（单位：分）

图 50：可兰素协助中石油建立加注站

图 51：可兰素协助中石油建立尿素加注站

图 52：龙蟠科技 2020 年前三季度收入 13.7 亿元，同比+12.6%

图 53：龙蟠科技 2020 年前三季度归母净利润 1.4 亿元，同比+52.1%

图 54：龙蟠科技 20H1 车用尿素收入占比 35.3%，同比+10.7pp

图 55：龙蟠科技车用尿素毛利率高于其他业务

图 56：龙蟠科技 2020 年前三季度毛利率 36.9%，净利率 12.0%

图 57：龙蟠科技费用管控情况良好

图 58：艾可蓝 2020 年前三季度收入 4.5 亿元，同比+8.3%

图 59：艾可蓝 2020 年前三季度归母净利润 0.9 亿元，同比+10.9%

图 60：艾可蓝 2019 年 SCR 收入占比 83.7%

图 61：艾可蓝 2019 年 SCR 毛利率达 36.0%

图 62：艾可蓝 2020 年前三季度毛利率 36.5%，净利率 19.8%

图 63：艾可蓝费用管控能力良好

图 64：奥福环保 2020 年前三季度收入 2.2 亿元，同比+15.3%

图 65：奥福环保 2020 年前三季度归母净利润 0.4 亿元，同比+25.0%

图 66：奥福环保 2020 年前三季度毛利率 54.4%，净利率 28.1%

图 67：奥福环保 2020H1 蜂窝陶瓷收入占比 83.6%

图 68：国瓷材料 2020 年前三季度收入 18.3 亿元，同比+18.9%

图 69：国瓷材料 2020 年前三季度归母净利润 4.2 亿元，同比+15.9%

图 70：国瓷材料 2020 年前三季度毛利率 47.1%，净利率 24.6%

图 71：国瓷材料 2020H1 催化材料收入占比达 12.7%

图 72：威孚高科 2020 年前三季度收入 99.2 亿元，同比+57.0%

图 73：威孚高科 2020 年前三季度归母净利润 22.3 亿元，同比+29.2%

图 74：威孚高科投资净收益拉高公司净利率水平

图 75：2020H1 威孚高科汽车后处理系统收入占比达 50.0%

图 76：银轮股份 2020 年前三季度收入 45.1 亿元，同比+16.9%

图 77：银轮股份 2020 年前三季度归母净利润 2.8 亿元，同比+9.1%

图 78：银轮股份 2020 年前三季度毛利率 24.7%，净利率 6.8%

图 79：银轮股份 2020H1 尾气处理系统收入占比 14.1%

图 80：隆盛科技 2020 年前三季度收入 3.7 亿元，同比+34.1%

图 81：隆盛科技 2020 年前三季度归母净利润 0.3 亿元，同比+48.1%

请务必阅读正文后的重要声明部分
图 82：隆盛科技 2020 年前三季毛利率 26.9%，净利率 8.1% ...49
图 83：2020H1 隆盛科技 EGR 产品收入占比达 44.5% ...49
图 84：凯龙高科 2019 年收入 10.7 亿元，同比-8.1% ...50
图 85：凯龙高科 2019 年归母净利 0.6 亿元，同比-19.4% ..50
图 86：凯龙高科 2019 年毛利率 31.1%，净利率 5.7% ...50
图 87：凯龙高科自主品牌中尾气处理系统收入占比超 80% ..50

请务必阅读正文后的重要声明部分
排放控制

2020年“蓝天保卫战三年行动计划”将强化NOx排放控制。汽油机和柴油机工作原理不同导致柴油机NOx、PM颗粒物排放较多，汽油机HC、CO排放较多。

“国六”实施标志着我国尾气排放标准正式追平欧洲。

表1：空气污染物超标会威胁人们身体健康（优、良为达标，其余均为超标）
表2：2020年“蓝天保卫战三年行动计划”将强化NOx排放控制
表3：汽油机与柴油机工作原理不同导致柴油机NOx、PM颗粒物排放较多，汽油机HC、CO排放较多
表4：“国六”实施标志着我国尾气排放标准正式追平欧洲
表5：多地区已经提前实施国六标准
表6：以汽油发动机为主的轻型汽车“国六”对HC、NOx的排放限制较大
表7：以柴油发动机为主的轻型汽车“国六”新增对HC排放物的限制
表8：柴油机重型汽车稳态工况“国六”NOx降幅要求达80%，新增NH3、PN等排放限制
表9：柴油机重型汽车瞬态工况“国六”NOx降幅要求达77%，新增NH3、PN等排放限制
表10：“国六”重型汽车NOx排放标准比“欧六”（Euro 6d）严格20%
表11：“国六b”轻型汽车CO、THC、NMHC、NOx、PM排放量均超越“欧六”
表12：各地补贴老旧车辆换新力度大
表13：各地老旧车辆禁行力度近年来变大
表14：多地推行“黄改绿”和“国三”柴油车尾气处理系统改造
表15：“国六”驾驶性能限制将全面提升车用尿素使用量和普及率
表16：2019年底全国机动车遥感监测系统建成2671台，在建960台，建设已全面铺开
表17：全国各省（区、市）深入开展机动车环保监督抽测
表18：汽油机与柴油机EGR用处不同
表19：DPF颗粒物净化率达70%-90%
表20：各类尾气后处理系统介绍
表21：“国六”阶段汽油机、柴油机后处理路径均有较大变化
表22：车用尿素成为卡车司机必备消费品，“国六”阶段重卡司机年消费尿素约8400元左右
表23：“国六”标准下，汽油机尾气处理系统路径与单价均有所提高（单位：元）
表24：汽油机乘用车产量受新能源车冲击，汽油商用车产量保持增长（单位：万辆）
表25：预测2025年，汽油机后处理市场规模达578亿元，较2019年同比+37.8%（单位：亿元）
表26：“国六”实施后，汽油机尾气后处理系统2020-25年六年平均年增327亿元市场需求（单位：亿元）
表27：“国六”标准下，柴油机尾气处理系统单车价值量最高提升19100元，重卡提升23800元（单位：元）
表28：预测2020年柴油货车产量超预期，2021-25年柴油货车产量保持稳定（单位：万辆）
表29：预测2025年，柴油货车后处理市场规模达600亿元，较2019年同比+151.5%（单位：亿元）
表30：“国六”实施后，柴油货车尾气后处理系统2020-25年六年平均年增248亿元市场需求（单位：亿元）
表31：2018年“国三”柴油货车保有量占比近半，“国五”占比超15%
表32：2018年底“国三”柴油货车保有量占比近半，“国五”占比超15%
表33：2020-2025年柴油货车不同车型保有量预测（单位：万辆）
表34：2025年车用尿素市场需求量为2019年7.3倍（单位：万吨）
表35：预测2025年车用尿素市场规模达525亿元，中、重卡超400亿元（单位：亿元）
表36：“国六”实施后，车用尿素2020-25年六年累计新增市场1016亿元，平均年增169亿元（单位：亿元）
表37：国标趋严情况下，车用尿素向高端市场集中
复盘：机动车国标更新提速改善空气质量，史上最严“国六”已经到来

1.1 空气污染已成为第四大健康“杀手”，间接经济损失影响占GDP超6%

空气污染已成为威胁人类生命健康的第四大“杀手”。空气污染（又称为大气污染），常见的空气污染气体包括SO₂、NOₓ、CO、O₃、颗粒物（包括PM2.5、PM10）等。据世界银行统计，自2013年以来，空气污染已成为继代谢风险、饮食风险、烟草烟雾之后的第四大死亡，全球每年有约1/10的死亡可归因于空气污染，空气污染每年致死人数是疟疾的6倍以上，是艾滋病的4倍以上。空气污染不仅对健康危害大，且具有多种源头，包括移动源（机动车、非道路移动机械）、工业源、扬尘源、生活源、燃煤源等。全球87%的人暴露在世界卫生组织划定的空气污染超标地区，而机动车尾气管理不达标、工业废气随意排放、燃煤、焚烧垃圾等问题较为集中的发展中国家占据了全球90%以上的过早死亡病例，婴儿、老人成为受大气污染影响最严重的群体。

图1：全世界1/10的死亡可以归咎于空气污染

图2：大气污染导致的过早死亡病例90%发生在发展中国家

表1：空气污染物超标会威胁人们身体健康（优、良为达标，其余均为超标）

<table>
<thead>
<tr>
<th>空气质量指数</th>
<th>空气质量指数级别</th>
<th>对健康影响情况</th>
<th>污染物浓度限值(CO单位为mg/m³，其余为μg/m³，O₃为8h移动平均，其余为24h平均)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0~50</td>
<td>一级(优)</td>
<td>空气质量令人满意，基本无空气污染，人群可正常活动</td>
<td>SO₂ 50 NO₂ 40 PM10 50 PM2.5 35 O₃ 100 2</td>
</tr>
<tr>
<td>51~100</td>
<td>二级(良)</td>
<td>空气质量可接受，部分污染物可能对极少数异常敏感人群有影响，极少数异常敏感人群减少户外活动</td>
<td>SO₂ 150 NO₂ 80 PM10 150 PM2.5 75 O₃ 160 4</td>
</tr>
<tr>
<td>101~150</td>
<td>三级(轻度污染)</td>
<td>易感人群症状加重，健康人群可能出现刺激症状。儿童、老年人及心脏病、呼吸系统疾病患者应减少活动、减少户外锻炼</td>
<td>SO₂ 475 NO₂ 180 PM10 250 PM2.5 115 O₃ 215 14</td>
</tr>
<tr>
<td>151~200</td>
<td>四级(中度污染)</td>
<td>进一步加剧易感人群症状，可能对健康人群有影响。儿童、老年人及心脏病、呼吸系统疾病患者应减少活动、减少户外锻炼</td>
<td>SO₂ 800 NO₂ 280 PM10 350 PM2.5 150 O₃ 265 24</td>
</tr>
</tbody>
</table>
空气质量指数级别

| 空气质量指数 | 空气质量指数级别 | 对健康影响情况 | 污染物浓度限值(单位为mg/m³,其余为μg/m³)
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>201~300</td>
<td>五级（重度污染）</td>
<td>避免长时间、高强度户外锻炼,一般人群减少户外运动</td>
<td>SO2:160 NO2:565 PM10:420 PM2.5:250 O3:800 CO:36</td>
</tr>
<tr>
<td>>300</td>
<td>六级（严重污染）</td>
<td>健康人群运动能力降低，有明显强烈症状，提前出现某些疾病，儿童、老年人和病人应当留在室内，避免体力消耗，一般人群应避免户外活动</td>
<td>>1600 >565 >420 >250 >800 >36</td>
</tr>
</tbody>
</table>

数据来源：环境空气质量指数(AQI)技术规定，西南证券整理

全球空气污染每年造成的间接经济损失超 GDP 6%，我国空气污染形势严峻。空气污染除对人体健康造成危害以外，其造成的过早死亡、健康损失、农作物受损、建筑腐蚀等问题也会带来巨大经济损失。据世界银行统计，受大气污染影响，2013年全球劳动人口过早死亡导致的直接经济损失达 2250 亿美元，占当年全球 GDP（以 2011 年美元计算，经购买力平价调整）的 0.3%，空气污染导致的人类福祉损失（包含大气污染造成的疾病、酸雨腐蚀等其他间接影响人类福祉的损失）达 5.1 万亿美元，占当年全球 GDP 的 6.6%。国内部分学者对我国 76 个重点城市 2014 年的大气污染所造成的健康经济损失进行统计，发现 2014 年 76 城因大气污染造成的直接健康经济损失达 3822 亿元，占当年 76 城 GDP 的 1.33%（不包括过早死亡和疾病等间接损失，不包含农作物、建筑腐蚀等间接经济损失，统计口径较小）。据生态环境部数据，京津冀及周边地区较其余地区污染气体排放程度高四倍以上，成为我国空气污染最严重的地区，经济成本占比也相应有所提高。

图 3：空气污染对经济造成多种损失

图 4：2019 年我国空气质量达标城市占比 46.6%，仍有提升空间

数据来源：中国知网，西南证券整理
数据来源：《2019年中国生态环境状况公报》，西南证券整理

1.2 移动源尾气空气污染分担率居前，NOx 排放较多的柴油货车成为管制重点

1.2.1 《大气十条》与《蓝天保卫战》等环保政策落实到位，NOx 排放有待进一步控制
2013 年《大气十条》重点放在细颗粒物（PM2.5 和 PM10）的治理，成效显著。近年来，随着雾霾在京津冀及周边地区、长三角、汾渭平原等地出现，并严重危害人民群众的身体健康，空气污染愈发引起人们重视。2013 年，国务院发布《大气污染防治行动计划》（以下简称《大气十条》），着重强化以细颗粒物（PM2.5）为重点的大气污染防治工作，要求到 2017 年，全国地级及以上城市可吸入颗粒物（PM10）浓度下降 10% 以上，京津冀、长三角、珠三角等区域 PM2.5 浓度分别下降 25%、20%、15% 左右，其中北京市 PM2.5 年均浓度控制在 60 微克/立方米左右。监测数据显示，2017 年，全国地级及以上城市 PM10 平均浓度比 2013 年下降 22.7%；京津冀、长三角、珠三角等重点区域 PM2.5 平均浓度分别比 2013 年下降 39.6%、34.3%、27.7%；北京市 PM2.5 年均浓度降至 58 微克/立方米。全面完成《大气十条》确定的环境空气质量改善目标。

表 2：2020 年“蓝天保卫战三年行动计划”将强化 NOx 排放控制

<table>
<thead>
<tr>
<th></th>
<th>2015</th>
<th>2019</th>
<th>变化幅度</th>
<th>蓝天保卫战三年行动目标</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO2</td>
<td>25</td>
<td>11</td>
<td>-56%</td>
<td>>-15%</td>
</tr>
<tr>
<td>Nox</td>
<td>30</td>
<td>27</td>
<td>-10%</td>
<td>>-15%</td>
</tr>
<tr>
<td>PM10</td>
<td>87</td>
<td>63</td>
<td>-28%</td>
<td></td>
</tr>
<tr>
<td>PM2.5</td>
<td>50</td>
<td>36</td>
<td>-28%</td>
<td>未达标地区及以上城市降幅超 18%</td>
</tr>
<tr>
<td>地级市达标比例</td>
<td>76.7%</td>
<td>82.1%</td>
<td>+5.4pp</td>
<td>达标天数比例 >80%</td>
</tr>
</tbody>
</table>

数据来源：生态环境部、Wind、西南证券整理

请务必阅读正文后的重要声明部分
1.2.2 移动源空气污染物分担率居前，柴油货车成为控制 NOx 排放的关键

移动源尾气成为空气污染重头，是 NOx、PM 颗粒物的主要排放源头。近年来各地政府对空气污染进行溯源排查，确定空气污染防控的重点。污染源头一般包括固定燃烧源、生物质燃烧源、工业过程源、移动源。其中，固定燃烧源包括交通、工业和民用等，以及煤炭、柴油、煤油、汽油等化石燃料。工业过程源包括冶金、建材、化工等行业。根据生态环境部对全国城市空气污染的监测报告（2020），移动源已成为我国空气污染的重要来源。京津冀及周边城市（2+26 城市）移动源约占 NOx 总排放量的 52%，占 SO2 总排放量的 4%，占 VOCs(以挥发性有机化合物为主)总排放量的 16%。北京（2018）等城市环保局数据，移动源约占 PM2.5、PM10 等颗粒物社会排放量的三成以上，且移动源占比逐渐超越燃煤、工业等源头，成为颗粒物排放的“头号祸首”。

数据来源：生态环境部, 西南证券整理

请务必阅读正文后的重要声明部分
图 9: 移动源包括机动车和非道路移动机械

数据来源：《大气颗粒物来源解析技术指南》，西南证券整理

图 10: 移动源占京津冀及周边城市(2+26 城市)SO2 排放量 4%

数据来源：生态环境部，西南证券整理

图 11: 移动源占京津冀及周边城市(2+26 城市)VOCs 排放量 16%

数据来源：生态环境部，西南证券整理

图 12: 移动源占京津冀及周边城市(2+26 城市)NO2 排放量 52%

数据来源：生态环境部，西南证券整理

图 13: 2018 年移动源占主要城市 PM2.5 排放量 30%左右

数据来源：生态环境部，西南证券整理

请务必阅读正文后的重要声明部分
机动车是移动源尾气排放主力，汽车 CO、HC、NOx 和 PM 排放合计超过移动源的 90%。2019 年，全国机动车四项污染物排放总量为 1603.8 万吨，其中一氧化碳（CO）、碳氢化合物（HC，包含在 VoCs 中）、氮氧化物（NOx）、颗粒物（PM）排放量分别为 771.6 万吨、189.2 万吨、635.6 万吨、7.4 万吨。汽车是污染物排放总量的主要贡献者，其排放的 CO、HC、NOx 和 PM 超过机动车排放的 90%。非道路移动源 NOx 排放量接近于机动车，其中，工程机械、农业机械、船舶、铁路内燃机车、飞机排放的 NOx 分别占非道路移动源排放总量的 33.3%、34.3%、28.2%、2.5%、1.7%。

图 14: 汽车 CO、HC、NOx 和 PM 排放合计超过移动源的 90%

图 15: 柴油货车为移动源中氮氧化合物、颗粒物主要排放者

根据燃烧物分类：柴油车 NOx 排放量超过汽车排放总量的 80%，PM 排放量超过 90%。汽油车 CO 排放量超过汽车排放总量的 80%，HC 排放量超过 70%。造成柴油机与汽油机排放质量不同的原因为柴油机与汽油机性质不同。柴油机的燃烧温度高，不易自燃，故柴油机常用压燃式点火，燃烧环境为富氧环境，高温高压下容易产生更强氧化性的 NOx：减少氧环境可以避免过多 NOx 的产生，但柴油分于较汽油大，溶点较汽油高，当喷油压力不足够大时，雾化效果不佳，容易燃烧不完全并产生较多的 PM，造成柴油车冒黑烟现象。NOx 与 PM 在生成机制上往往存在此消彼长的态势。

表 3: 汽油机与柴油机工作原理不同导致柴油机 NOx、PM 颗粒物排放较多，汽油机 HC、CO 排放较多

<table>
<thead>
<tr>
<th></th>
<th>压缩比 (过量空气系数)</th>
<th>点火方式</th>
<th>油品种点</th>
<th>HC</th>
<th>CO</th>
<th>PM</th>
<th>NOx</th>
<th>价格 (元/升)</th>
</tr>
</thead>
<tbody>
<tr>
<td>汽油</td>
<td>7:10 (0.7~1.3)</td>
<td>点燃</td>
<td>炽热性性，着火温度高，不易自燃，燃烧持续期短</td>
<td>不完全燃烧，氧化效率低，燃烧不完全，导致 PM 产物较少</td>
<td>含铅汽油中的铅、汽油中的硫、汽油中的含硫的硫酸盐、机油中灰分、添加剂</td>
<td>NOx 生成需要高温、高压、氧化环境，汽油机空燃比高，NOx 产物少</td>
<td>5.5~7.5</td>
<td></td>
</tr>
<tr>
<td>柴油</td>
<td>14:23 (1.5~3)</td>
<td>压燃</td>
<td>炽热性性，着火温度低，氧化效率低，易自燃，高温易分解</td>
<td>HC 化合物比汽油中的 HC 分子量高，分子量大，不易挥发，受淬熄效应和燃烧温度影响小</td>
<td>空燃比较大，氧化效率高，燃烧温度高，转速较低（燃烧时间相对较长），CO 燃烧充分</td>
<td>微粒组成复杂，包含碳烟、未燃燃料、润滑油中的可溶有机成分、硫酸盐、机油中灰分、添加剂</td>
<td>柴油机高温燃烧，空燃比高，由于 PM 颗粒物与 NOx 此消彼长关系，汽油机排放路径往往选择通过内循环方式减少 PM 颗粒物排放，造成 NOx 数量增多</td>
<td>5.2~5.9</td>
</tr>
</tbody>
</table>

数据来源：《汽车实用技术》，西南证券整理

请务必阅读正文后的重要声明部分
图 16: NOx 排放量随氧气浓度提升而升高

根据车型分类：乘用车以汽油机为主，是 HC 和 CO₂排放的主要力量。2019 年，一氧化碳 (CO)、碳氢化合物 (HC)、氮氧化物 (NOx)、颗粒物 (PM) 排放量分别为 488.6 万吨、126.2 万吨、102.6 万吨、0.7 万吨，占汽车排放总量的 70.3%、73.7%、16.5%、9.9%。小型客车贡献了 65.0% 的 CO 排放量和 70.5% 的 HC 排放量。造成这种现象的原因是小型客车（即乘用车中的轿车、SUV、MPV 等）主要以汽油机为主。2019 年汽车乘用车产量占乘用车比例达 93.5% 左右，新能源乘用车占比为 5.6%，柴油乘用车占比仅为 0.4%，汽油机则是 HC 和 CO₂的主要排放力量。

货车以柴油机为主，是 NOx 和 PM 颗粒物排放的主要力量。2019 年，一氧化碳 (CO)、碳氢化合物 (HC)、氮氧化物 (NOx)、颗粒物 (PM) 排放量分别为 205.7 万吨、45.0 万吨、519.6 万吨、6.2 万吨，占汽车排放总量的 29.7%、26.3%、83.5%、90.1%，其中重型货车占 NOx 和 PM 颗粒物排放的比例分别为 74.0% 和 52.4%。重型货车（重卡）和中型货车（中卡）目前以柴油机为主，新能源和天然气重卡占比不足 5%，轻型货车（轻卡）中柴油机占比接近 50%，柴油货车成为 NOx 和 PM 颗粒物的主要排放力量。
图17：2019年乘用车(小型客车)产量中汽油机占比达93%

图18：2019年67%的新产货车配备柴油机

图19：2019年小型客车贡献移动源CO2排放量65%

图20：2019年小型客车贡献移动源HC排放量71%

图21：2019年重型货车贡献移动源NOx排放量74%

图22：2019年重型货车贡献移动源PM排放量52.4%

图23：2019年重型货车贡献移动源PM排放量52.4%

数据来源：Wind，西南证券整理

数据来源：《中国移动源环境管理年报2020》，西南证券整理

数据来源：《中国移动源环境管理年报2020》，西南证券整理

数据来源：《中国移动源环境管理年报2020》，西南证券整理

数据来源：《中国移动源环境管理年报2020》，西南证券整理

根据国标分类：汽油车国标贯彻较为彻底，柴油车中大量“国三”车等待淘汰。分国标看，在CO、HC排放中，“国四”车型贡献率排名第一，分别贡献31.9%和34.4%。而NOx和PM排放中，“国三”车贡献率排名第一，分别贡献44.9%和61.7%。造成这种现象的原因是汽油车“国四”标准是2011年实施的，柴油货车的“国四”标准是2014年开始实施。
因此“国三”柴油货车禁售较晚，2018 年“国三”柴油货车保有量达 47.5%。“国三”柴油货车在 NOx 和 PM2.5 颗粒物方面污染排放较大。由于当前各类排放物中，NOx 和 PM2.5 的减排是治理大气污染的重点，因此，柴油货车，特别是“国三”柴油货车的淘汰成为治理空气污染的关键。

图 23：“国三”车贡献 44.9%的 NOx 和 61.7%的 PM 排放

图 24：2018 年柴油货车中“国三”占比 47.5%

图 25：柴油货车是 NOx 和 PM 颗粒物排放的重点

数据来源：《中国移动源环境管理年报 2020》，西南证券整理

1.3 机动车排放国标成为空气污染治理利器，“国六”成为史上最严国标

尾气排放国标不断进步，“国六”实施标志着我国尾气排放标准正式追平欧洲。1983 年，我国发布了第一份《机动车控制排放标准》文件，对汽油车和摩托车的 CO、HC 排放限量做出了限制，但针对重型车的排放标准则一直处于空缺阶段。2000 年 7 月，我国正式发布“欧一”标准，推行“国一”标准，只有满足标准的汽车才能出厂销售，而同期欧洲已在执行“欧三”标准，我国国标落后欧洲近两代。2014 年，“欧六”标准（Euro 6b）实施，“欧六”各阶段顺序大致为 Euro 6b, Euro 6c, Euro 6d-TEMP, Euro 6d，现在正在实施的 Euro 6c 实施于 2018-2019 年，严格程度相当于我国“国六 a”，我国从 2019 年起，天然气重卡率先落
“国六 a”标准排放，部分地区乘用车也开始施行“国六 a”标准，2021 年，全部柴油车和汽油车的“国六”标准将落地，我国正式在机动车尾气排放标准上追平欧洲标准。

图 26：我国尾气排放标准不断进步

“国六”分为 a、b 两个阶段，北京等地区已在部分车型率先实施“国六”排放标准。不同车型使用不同的排放标准，“国六”标准又在不同车型中分为 a、b 两个细分标准，“国六 b”较“国六 a”更为严格。2019 年 7 月，重型燃气车和部分地区的轻型汽车实施“国六 a”标准。2020 年 7 月，城市重型柴油车及少量地区的重型柴油车和所有轻型汽车开始实施“国六 a”标准，实施进度开始深入。2021 年 7 月，全国所有重型柴油车开始实施“国六 a”标准，2023 年 7 月，所有轻型汽车和重型汽车将实施“国六 b”标准，“国六”标准实施将基本推进完成。2020 年 5 月，受新冠肺炎影响，生态环境部、工信部、商务部和海关总署联合发布公告，调整轻型汽车“国六”排放标准实施：对未实施“国六”的地区增加 6 个月的过渡期（实施日期到 2021 年 1 月），过渡期内禁止生产和进口不满足“国六”标准的产品，但允许对 2020 年 7 月以前生产和进口的不满足“国六”标准的产品进行销售。根据各地政府网站公布政策来看，北京、上海、广州、深圳、天津等重点城市轻型汽车已推进到“国六 b”，而重型柴油车目前推进较慢。
表 4: “国六”实施标志着我国尾气排放标准正式追平欧洲

<table>
<thead>
<tr>
<th>标准阶段</th>
<th>车型</th>
<th>具体车型范围</th>
<th>实施时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>国六 a</td>
<td>轻型汽车</td>
<td>所有车辆，质量不超过 3.5T 的 M1 类、M2 类和 N1 类汽车</td>
<td>2021 年 1 月 1 日</td>
</tr>
<tr>
<td>重型汽车</td>
<td>燃气车辆</td>
<td>天然气重卡</td>
<td>2019 年 7 月 1 日</td>
</tr>
<tr>
<td>重型汽车</td>
<td>城市车辆</td>
<td>公交车、邮政车和环卫车</td>
<td>2020 年 7 月 1 日</td>
</tr>
<tr>
<td>重型汽车</td>
<td>所有车辆</td>
<td>其他质量超过 3.5T 的客车和货车</td>
<td>2021 年 7 月 1 日</td>
</tr>
<tr>
<td>国六 b</td>
<td>轻型汽车</td>
<td>所有车辆，质量不超过 3.5T 的 M1 类、M2 类和 N1 类汽车</td>
<td>2023 年 7 月 1 日</td>
</tr>
<tr>
<td>重型汽车</td>
<td>燃气车辆</td>
<td>天然气重卡</td>
<td>2021 年 7 月 1 日</td>
</tr>
<tr>
<td>重型汽车</td>
<td>所有车辆</td>
<td>其他质量超过 3.5T 的客车和货车</td>
<td>2023 年 7 月 1 日</td>
</tr>
</tbody>
</table>

数据来源：生态环境部, 西南证券

表 5：多地区已经提前实施国六标准

<table>
<thead>
<tr>
<th>地区</th>
<th>执行标准</th>
<th>是否执行“国六”排放标准</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>轻型汽车</td>
<td>城市用途重型汽车</td>
</tr>
<tr>
<td>北京</td>
<td>国六 b</td>
<td>√</td>
</tr>
<tr>
<td>上海</td>
<td>国六 a/b</td>
<td>√</td>
</tr>
<tr>
<td>广州</td>
<td>国六 b</td>
<td>√</td>
</tr>
<tr>
<td>深圳</td>
<td>国六 b</td>
<td>√</td>
</tr>
<tr>
<td>天津</td>
<td>国六 b</td>
<td>√</td>
</tr>
<tr>
<td>重庆市</td>
<td>国六 a</td>
<td>√</td>
</tr>
<tr>
<td>江苏省</td>
<td>国六 a</td>
<td>√</td>
</tr>
<tr>
<td>海南省</td>
<td>国六 a</td>
<td>√</td>
</tr>
<tr>
<td>河南省</td>
<td>国六 b</td>
<td>√</td>
</tr>
<tr>
<td>浙江省</td>
<td>国六 a</td>
<td>√</td>
</tr>
<tr>
<td>山东省</td>
<td>国六 a</td>
<td>√</td>
</tr>
<tr>
<td>山西省（8 市重点地区）</td>
<td>国六 a</td>
<td>√</td>
</tr>
<tr>
<td>四川省（成都地区）</td>
<td>国六 a</td>
<td>√</td>
</tr>
<tr>
<td>成都</td>
<td>国六 a</td>
<td>√</td>
</tr>
<tr>
<td>广东省</td>
<td>国六 b</td>
<td>√</td>
</tr>
<tr>
<td>河北省</td>
<td>国六 a</td>
<td>√</td>
</tr>
<tr>
<td>安徽省</td>
<td>国六 a</td>
<td>√</td>
</tr>
<tr>
<td>陕西省（关中地区）</td>
<td>国六 a</td>
<td>√</td>
</tr>
</tbody>
</table>

数据来源：各地政府网站, 西南证券

排放标准、补贴力度、处罚措施、驾驶性能限制程度、老旧车辆禁行与改装程度五个方面全面趋严，“国六”成为史上最严格的“国标”。国标实施严格程度一方面取决于排放标准的严格程度，一方面取决于相关政策对推广“国六”的配合程度。“国六”不同于之前国标，在排放标准、补贴力度、处罚措施、驾驶性能限制程度、老旧车辆禁行与改装程度五个方面为历届国标中最严格，且部分排放指标超越“欧六”最终阶段（Euro 6d）。

请务必阅读正文后的重要声明部分
1.3.1 标准最严：排放限值降幅为历届国标之最，堪称全球最严格排放标准

重型柴油车：国六a标准大幅加严，稳态 NOx 限值的最终降幅达 80%。重型柴油汽车的“国六a”阶段中，对稳态工况新增了 THC、NH₃、PN 的检测，对瞬态工况新增了 NH₃、PN 的检测，同时，NOx、PM、NMHC、CH₄ 的限值数值均有超过 50%的下降，其中 NOx 限值的下降幅度为 80%。此外，重型柴油汽车的“国六b”阶段中，主要增加了远程排放管理车载终端数据发送要求以及对终端的排放实时监控，对排放物的限制与“国六a”基本相同。

表 7：以柴油发动机为主的轻型汽车“国六”新增对 HC 排放物的限值

<table>
<thead>
<tr>
<th>排放标准</th>
<th>CO</th>
<th>THC</th>
<th>NMHC</th>
<th>NOx</th>
<th>N2O</th>
<th>PM</th>
<th>PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>国三标准</td>
<td>640</td>
<td>500</td>
<td>660</td>
<td>500</td>
<td>50</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>国四标准</td>
<td>500</td>
<td>250</td>
<td>20</td>
<td>4.5</td>
<td>6*10^11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>国五标准</td>
<td>500</td>
<td>180</td>
<td>20</td>
<td>4.5</td>
<td>6*10^11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>国六a标准</td>
<td>700</td>
<td>100</td>
<td>68</td>
<td>60</td>
<td>20</td>
<td>4.5</td>
<td>6*10^11</td>
</tr>
<tr>
<td>国六b标准</td>
<td>500</td>
<td>50</td>
<td>35</td>
<td>35</td>
<td>20</td>
<td>3</td>
<td>6*10^11</td>
</tr>
<tr>
<td>国六a较国五下降</td>
<td>-40.0%</td>
<td>新增</td>
<td>新增</td>
<td>新增</td>
<td>新增</td>
<td>新增</td>
<td></td>
</tr>
<tr>
<td>国六b较国六a下降</td>
<td>-28.6%</td>
<td>-50.0%</td>
<td>-48.5%</td>
<td>-41.7%</td>
<td>0.0%</td>
<td>-33.3%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

数据来源：生态环境部，西南证券整理

请务必阅读正文后的重要声明部分
表 9：柴油机重型汽车瞬态工况“国六”NOx 降幅要求达 77%，新增 NH3、PN 等排放限制

<table>
<thead>
<tr>
<th>排放标准</th>
<th>CO</th>
<th>NOx</th>
<th>PM</th>
<th>HC</th>
<th>THC</th>
<th>NH3</th>
<th>PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>国六标准降低幅度</td>
<td>0%</td>
<td>-80%</td>
<td>-50%</td>
<td>取消</td>
<td>新增</td>
<td>新增</td>
<td>新增</td>
</tr>
</tbody>
</table>

数据来源：生态环境部，西南证券整理

重型车 NOx、NH3，轻型车 CO、THC 等部分指标超越“欧六”（Euro 6d），堪称全球最严。重型车方面，“国六”针对重型柴油机汽车氢氧化物的限值为 400mg/kWh，比“欧六”（Euro 6d）严格 20%，此外还针对 NOx 处理产生的副产物 NH3 做出了一定限制，使得 ASC（氨气氧化催化系统）成为后处理新增设备，其余指标的限值则参照“欧六”标准。重型车方面，“国六”标准则要比“欧六”最终版（Euro 6d）更为严格，并且采用了 WLTC 工况。相比于“欧六”，“国六 b”一氧化碳、THC 和氢氧化物的限值下降了约 50%，还新增了氮气（N2O）的排放限值。对颗粒物 PM 的限值也更为严格，“欧六”为 4.5mg/kWh，而“国六 b”为 3mg/kWh。总的来说“国六 b”的排放限额要比“欧六”最终版（Euro 6d）更加严格。

表 10：“国六”重型汽车 NOx 排放标准比“欧六”（Euro 6d）严格 20%

<table>
<thead>
<tr>
<th>排放标准</th>
<th>CO</th>
<th>THC</th>
<th>NOx</th>
<th>NH3</th>
<th>PM</th>
<th>PN</th>
<th>NMHC</th>
</tr>
</thead>
<tbody>
<tr>
<td>国六（瞬态）</td>
<td>1500</td>
<td>130</td>
<td>400</td>
<td>10</td>
<td>10</td>
<td>8*10^11</td>
<td></td>
</tr>
<tr>
<td>欧六（瞬态）</td>
<td>1500</td>
<td>130</td>
<td>500</td>
<td>10</td>
<td>10</td>
<td>8*10^11</td>
<td></td>
</tr>
<tr>
<td>国六（瞬态）</td>
<td>4000</td>
<td>160</td>
<td>460</td>
<td>10</td>
<td>10</td>
<td>6*10^11</td>
<td>160</td>
</tr>
</tbody>
</table>

数据来源：生态环境部，中国知网，西南证券整理
1.3.2 补贴最多:“国三”柴油车换“国六”，单车补贴可占国三车售价的1/3

老旧车辆淘汰补贴进一步推动“国六”时代来临。目前老旧车辆主要可分为黄标车(尾气排放水平低于“国一”排放标准的汽油车和“国三”排放标准的柴油车)、“国一”“国二”汽油车、“国三”柴油车，部分地区对“国四”柴油车也做出了限行和补贴政策。针对黄标车，北京、江苏、上海等地对上路黄标车将处以罚款100元，驾驶员记3分的处罚，同时对每辆黄标车提供最高约为2万/车的补贴，针对“国一”、“国二”汽油车(以乘用车为主)，南京市给予2750—9500元/车的补贴标准，深圳市对2020年报废的“国二”汽车给予5600-17500元/台补贴。根据《打赢蓝天保卫战三年行动计划》要求，京津冀及周边地区、汾渭平原在2020年底之前要淘汰“国三”及以下重卡100万辆。北京、深圳等地陆续发布补贴淘汰老旧车辆的政策，北京最高补贴为6万元/车，上海市最高补贴为6.8万元/车(集装箱运输车可达11.6万元/车)，济南市、南京市、杭州市等最高补贴标准为4万元/车，“国三”阶段重卡售价约在20-30万元，对于“国三”车辆淘汰具有较强的促进作用。

上海等部分地区启动“国四”车淘汰补贴。目前国内部分地区对“国四”柴油车也实行了限行和补贴政策，上海市2020年对本市个人消费者报废或转出“国四”排放标准的燃油汽车，同时在本市注册登记的汽车销售企业购买符合要求的“国六”排放标准燃油新车，可享受每辆车4000元人民币的财政补贴。综上，各地对汽油乘用车的补贴延伸至“国三”以前标准，而对柴油车力度更强，部分地区已开始鼓励“国四”车更换“国六”新车。

| 表12: 各地补贴老旧车辆换新力度大 |
国标	北京	上海	深圳	南京	济南	杭州	宁波
黄标车	2.2万			2万元			
国一、国二汽油车	4千-1万元	1.75万元	9500元				
国三柴油车	6万元	6.8万元	6.65万元	4万元	4万元	4万元	5.7万元
国四柴油车	4000元						

数据来源:各地政府网站，西南证券整

1.3.3 禁行+改装组合拳:主要针对“国三”重卡，加快老旧车辆淘汰

“国三”重卡占比最大，禁行+黄改绿推动“国三”退出市场。“国三”柴油货车2018年保有量达864万辆，占比47.5%，在各类柴油货车中占比最高，其中“国三”柴油重卡约326万辆，在柴油重卡中占比最高，根据上文分析可知，“国三”柴油货车是当前NOx、PM等污染物的首要排放源头。为加速“国三”货车淘汰，除了上文提到的对“国三”车主报废、转出、购置“国六”实施补贴之外，部分地区还对“国三”车实施禁行，并对改装“国三”车尾气后处理系统进行补贴(添加符合更严格排放标准的DPF，DPF+SCR系统，俗称“黄改绿”)，补贴额度可达50%（改装单价在2万-3万左右），并且改装避免了车龄较小的
“国三”车淘汰给车主带来的经济压力，在兼顾广大“国三”车车主利益的同时，进一步加速“国三”车辆的退出。

表13：各地老旧车辆管控力度近年来变大

<table>
<thead>
<tr>
<th>地区</th>
<th>管控政策</th>
</tr>
</thead>
<tbody>
<tr>
<td>北京</td>
<td>2015年起黄标车全市禁行，2019年11月1日起，全天禁止所有国三排放标准柴油载货汽车（含整车运送鲜活农产品的国三排放标准柴油载货汽车）进入市行政区域内道路行驶。</td>
</tr>
<tr>
<td>上海</td>
<td>自2020年6月1日起，全天24小时禁止国三标准柴油货运机动车（含市内运行的国三标准柴油货运机动车）进入市行政区域内道路行驶。</td>
</tr>
<tr>
<td>深圳</td>
<td>2018年7月1日起，除高速公路外，每日7-24时，对国三柴油货车实施单双号限行。</td>
</tr>
<tr>
<td>天津</td>
<td>2020年淘汰老旧车4万辆，国三及以上重型柴油车安装DPF，禁止中、重型柴油货车在市内区域行驶。</td>
</tr>
<tr>
<td>武汉</td>
<td>2020年1月1日起，国三重型柴油车禁止在我市三环线（含）以内区域行驶。</td>
</tr>
<tr>
<td>南京</td>
<td>2018年7月1日起，除高速公路外，每日7-24时，对国三及以上重型柴油车实施单双号限行。</td>
</tr>
</tbody>
</table>
| 苏州 | 全天范围内禁止国三及以下排放标准柴油货车进入城市道路(含环线和高架桥)。
| 济南 | 禁止达不到国四排放标准的柴油货车进入市区道路。
| 东莞 | 2018年起，全市范围全天禁止国三柴油车通行。 |
| 杭州 | 严格执行国三及以下老旧柴油车通行管理政策，依法严肃查处违反通行管理行为。 |
| 桂林 | 禁止不符合国三排放标准的柴油货车进入市区道路。
| 东莞 | 严格实施国三及以下排放标准柴油车尾气处理系统改造。
| 西安 | 禁止不符合国三排放标准的柴油货车进入市区道路。

数据来源：各地政府网站，西南证券整理

表14：多地推行“黄改绿”和“国三”柴油车尾气处理系统改造

<table>
<thead>
<tr>
<th>地区</th>
<th>黄改绿</th>
<th>“国三”柴油车改造</th>
<th>出租车改造（三元催化器）</th>
</tr>
</thead>
<tbody>
<tr>
<td>北京</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>上海</td>
<td>√</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>广州</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>深圳</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>天津</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>重庆</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>山东省</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>黑龙江</td>
<td>√</td>
<td></td>
<td></td>
</tr>
<tr>
<td>广东省</td>
<td>√</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

请务必阅读正文后的重要声明部分
1.3.4 驾驶性能限制：性能限制使车用尿素成为卡车司机必备消费品，有助于降低 NOx 排放

若车用尿素等溶剂添加不达标，将引发驾驶性能限制。OBD 是指安装在汽车发动机上的计算机信息系统，用于监控发动机的运行状况和尾气后处理系统的工作状态。2011 年 7 月 1 日以后生产的轻型汽油车，2018 年 1 月 1 日以后生产的柴油车均必须配有 OBD 等自动监测系统。驾驶性能限制一般发生在机动车尾气（主要指 NOx）排放标准超过限值，或 OBD 自动监测系统探测到机动车尿素或其他添加剂质量或余量低于规定标准时。针对配备 SCR 系统的轻型汽车（汽油机+柴油机），一旦尿素余量低于规定标准，机动车将面临限速 50km/h 的性能限制，并在添加尿素等溶液之前无法重新启动机动车（添加剂量要保证机动车运行不少于 500km）。我国轻型汽车多使用汽油，采取 TWC 方式控制尾气，SCR 系统多装在 NOx 排放量更高的重型柴油车上，因此对重型柴油车的性能限制将更加严格。“国五”重型柴油车尿素使用不到位时，将强行下降卡车扭矩的 15% - 25%，而“国六”标准在此基础上进一步增强，若因尿素使用不到位触发预警超过 20 小时，将强行使卡车限速至 20km/h，同时 OBD 等在线监测系统将每 24 小时将卡车尾气排放情况上报环保部门。

表 15: “国六”驾驶性能限制将全面提升车用尿素使用量和普及率

<table>
<thead>
<tr>
<th>限制规则</th>
<th>国五、国四</th>
<th>国六</th>
</tr>
</thead>
<tbody>
<tr>
<td>若尿素＜总容量的 10%</td>
<td>报警，10 小时内未纠正，扭矩下降 25%；20 小时内未纠正限速 20 公里/小时</td>
<td>将限速 20 公里/小时</td>
</tr>
<tr>
<td>若尿素＜总容量 2.5%</td>
<td>/</td>
<td>喷嘴中断，或者消耗量和需求量偏差超过 50%，启动报警系统。</td>
</tr>
<tr>
<td>反应剂消耗量监测</td>
<td>/</td>
<td>采用道路固定和专用车移动监测方式在国道、高速等路段实施监测</td>
</tr>
<tr>
<td>退烧监测</td>
<td>/</td>
<td>24 小时上传一次记录给环保部门</td>
</tr>
<tr>
<td>OBD 或 OBM 在线监测</td>
<td>新增 OBD 或 OBM 系统</td>
<td></td>
</tr>
<tr>
<td>排放装置使用期限使用期限</td>
<td>车或发动机寿命内正常使用，不用更换</td>
<td>M1、M2、N1 行驶里程 80000 公里或使用年限超 5 年（更换 2-3 次)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>M3、N2、N3 行驶里程超 160000 公里或使用年限超 5 年（更换 2-4 次)</td>
</tr>
</tbody>
</table>

数据来源：重型柴油车污染物排放限值及测量方法（中国第六阶段），西南证券整理
1.3.5 处罚最严格：老旧车辆限行铺开，遥感探测+罚款力度全面升级

遥感监测可实时拍摄尾气排放情况，布局逐步完善。以前年度对尾气排放的检查大多发生在年检时，随着“国六”时代到来，监管不再只发生于年检，截至2019年底，北京、天津、河北、山西、内蒙古、上海、山东、河南、湖北、广西、海南、重庆、四川共13个省（自治区、直辖市）生态环境部门成立了专门的机动车生态环境监管机构；石家庄、长春、南京、青岛等178个城市组建了相应的市级机动车生态环境监管机构，各地加快推进机动车遥感监测能力建设。截至2019年底，全国已完成遥感监测系统建设2671台套，在建960台套。2019年各地加大对在用机动车监督执法力度，通过遥感监测（含黑烟抓拍）、路检路查以及入户检查方式共检查37131.31万辆次，其中发现超标车1138.32万辆次，超标占比3.1%。遥感监测和其他监管方式力度正在全面提升。

“国六”罚款力度达“国四”、“国五”标准近十倍。通过草根调研，“国五”车司机对监管处罚的敏感度明显高于“国四”车司机，说明随着标准趋严，司机面临的监管落地程度更强。同时我们了解到，如果重型柴油车实际排放量超出规定值，不仅对应车牌将被遥感监测拍照记录，司机个人也将面临4-5000元罚款（此前罚款力度在几百元左右，中、重卡司机一千公里的运费约为5000元，与一次罚款接近）。因此，“国六”标准落地，同时伴随“国三”、“国四”车强制淘汰、限行，排气后处理系统将迎来大升级，车用尿素等添加剂市场也将迎来爆发。

表16: 2019年底全国机动车遥感监测系统建成2671台，在建960台，建设已全面铺开

<table>
<thead>
<tr>
<th>省（区、市）</th>
<th>固定式（不含黑烟）</th>
<th>黑烟</th>
<th>移动式</th>
<th>黑烟</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>建成（台）</td>
<td>在建（台）</td>
<td>建成（台）</td>
<td>在建（台）</td>
</tr>
<tr>
<td>北京</td>
<td>60</td>
<td>0</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>天津</td>
<td>29</td>
<td>10</td>
<td>21</td>
<td>0</td>
</tr>
<tr>
<td>河北</td>
<td>152</td>
<td>12</td>
<td>52</td>
<td>2</td>
</tr>
<tr>
<td>山西</td>
<td>45</td>
<td>36</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>内蒙古</td>
<td>3</td>
<td>20</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>辽宁</td>
<td>2</td>
<td>2</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>吉林</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>黑龙江</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>江苏</td>
<td>110</td>
<td>23</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>浙江</td>
<td>20</td>
<td>3</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>上海</td>
<td>0</td>
<td>1</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>安徽</td>
<td>45</td>
<td>29</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>福建</td>
<td>17</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>江西</td>
<td>6</td>
<td>12</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>山东</td>
<td>129</td>
<td>10</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>河南</td>
<td>251</td>
<td>21</td>
<td>118</td>
<td>15</td>
</tr>
<tr>
<td>湖北</td>
<td>19</td>
<td>22</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>湖南</td>
<td>16</td>
<td>20</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
尾气后处理行业专题报告

请务必阅读正文后的重要声明部分

表 17: 全国各省（区、市）深入开展机动车环保监督抽测

<table>
<thead>
<tr>
<th>省（区、市）</th>
<th>遥感监测</th>
<th>路检路查</th>
<th>入户检查</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>固定式（不含黑烟）</td>
<td>移动式</td>
<td>黑烟</td>
</tr>
<tr>
<td>省（区、市）</td>
<td>建成（台）</td>
<td>在建（台）</td>
<td>建成（台）</td>
</tr>
<tr>
<td>广东</td>
<td>79</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>广西</td>
<td>2</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>海南</td>
<td>34</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>重庆</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>四川</td>
<td>31</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>贵州</td>
<td>5</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>云南</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>西藏</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>陕西</td>
<td>36</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>甘肃</td>
<td>20</td>
<td>8</td>
<td>—</td>
</tr>
<tr>
<td>宁夏</td>
<td>11</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>青海</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>新疆</td>
<td>2</td>
<td>7</td>
<td>2</td>
</tr>
</tbody>
</table>

数据来源：地方生态环境部门上报，西南证券整理
<table>
<thead>
<tr>
<th>省 (区、市)</th>
<th>远感监测 (含黑烟抓拍)</th>
<th>路检路查</th>
<th>入户检查</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>检测数 (万辆)</td>
<td>超标数 (万辆)</td>
<td>检测数 (万辆)</td>
</tr>
<tr>
<td>广西</td>
<td>130.16</td>
<td>0.68</td>
<td>1.50</td>
</tr>
<tr>
<td>海南</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
</tr>
<tr>
<td>重庆</td>
<td>8.50</td>
<td>0.06</td>
<td>22.30</td>
</tr>
<tr>
<td>四川</td>
<td>144.43</td>
<td>5.00</td>
<td>8.59</td>
</tr>
<tr>
<td>贵州</td>
<td>412.67</td>
<td>3.79</td>
<td>0.02</td>
</tr>
<tr>
<td>云南</td>
<td>8.04</td>
<td>0.01</td>
<td>0.03</td>
</tr>
<tr>
<td>西藏</td>
<td>0.00</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>陕西</td>
<td>1936.26</td>
<td>153.16</td>
<td>27.85</td>
</tr>
<tr>
<td>甘肃</td>
<td>593.63</td>
<td>2.45</td>
<td>0.00</td>
</tr>
<tr>
<td>青海</td>
<td>2.62</td>
<td>0.01</td>
<td>5.43</td>
</tr>
<tr>
<td>宁夏</td>
<td>325.54</td>
<td>0.42</td>
<td>3.30</td>
</tr>
<tr>
<td>新疆</td>
<td>352.33</td>
<td>31.21</td>
<td>0.06</td>
</tr>
</tbody>
</table>

数据来源：地方生态环境部门上报，西南证券整理

综合以上数据，我们可以得出以下结论：

1) 空气污染成为影响人类生命健康和经济损失的重大祸首之一，当前目标是在减少 CO、HC、PM 等污染物的同时，着重降低 NOx 的排放。

2) 移动源尾气在氮氧化物、颗粒物、碳氢化合物等排放的分担率较高，成为治理空气污染的关键。汽油车 CO 排放量超过汽车排放总量的 80%，HC 排放量超过 70%，柴油车 NOx 排放量超过汽车排放总量的 80%，PM 排放量超过 90%，柴油货车的防治成为未来控制大气污染的关键。

3) “国三”及以前的柴油货车是目前 NOx、PM 颗粒物的“头号祸首”，“国三”的淘汰，及新标准“国六”的实施可以有效控制各类污染物，特别是 NOx。

4) “国六”落实到位后将清退高排量的“国三”、“国四”车辆，同时“国六”是目前最严格的排放措施，将有效降低机动车污染物排放。即去除高污染排放车辆，同时保证新增车辆低污染。
2 测算：“国六”新标下，2020-2025年尿素累计市场增量达千亿，后处理系统增量市场超四千亿

2.1 尾气后处理产业链：后处理系统增长空间确定，车用尿素自带消费属性

发动机尾气后处理按应用对象划分，可以分为柴油机后处理和汽油机后处理两大类。发动机尾气后处理是当前国际上普遍应用的排放控制技术，其主要原理是在发动机排气系统上加装净化装置，通过化学或/和物理反应，例如催化转化、过滤捕集等，将有害污染物如一氧化碳、碳氢化合物、氮氧化物、颗粒物等转化为无害物质如二氧化碳、水、氮气等，从而降低发动机有害排放，达到排放法规要求。发动机尾气后处理产品按应用对象划分，主要可以分为柴油机后处理和汽油机后处理两大类。

按构成划分，主要可分为尾气后处理系统（EGR、SCR、DOC、DPF、TWC、GPF等）和车用尿素。尾气处理系统中 EGR 可同时用于柴油车和汽油车，通过内循环降低 NOx 或 PM 颗粒物。SCR、DOC 和 DPF 主要用于柴油车，分别用于降低 NOx、CO 和 HC、PM 颗粒物等污染排放，TWC 和 GPF 主要用于汽油车，TWC 可同时减少 NOx、CO、HC 等污染物，GPF 用于颗粒物捕集；车用尿素主要用于柴油车 SCR 系统，经催化剂催化后可以与 NOx 发生还原反应，生成无污染的 N2。尾气后处理系统主要加装在新生产的国标车辆上，其驱动因素为尾气排放政策严格程度和汽车产销量；车用尿素用于所有柴油车，不同国标的用量比例不同，其驱动因素为尾气排放政策的严格程度和柴油车保有量的结构性变化。

图 30：尾气后处理产业链主要包括尾气后处理系统和车用尿素
2.1.1 尾气后处理系统："国六"排放路径下，需要各类处理系统集成应用

汽油机："国六"标准下，汽油机TWC迎来升级，部分采取TWC+GPF方式。三元催化剂（TWC）应用于汽油机尾气后处理，因其同时对HC、CO和NOx进行处理而得名，是非常有效且被广泛应用的汽油机尾气后处理技术。三元催化剂一般通过在催化剂载体或金属载体的通道上，涂上多孔的活性氧化铝（γ-Al2O3）作为第二载体以增大内壁的比表面积；在氧化铝涂层中还需添加各种稀土金属氧化物作为催化剂，以及贵金属铂（Pt）、钯（Pd）及铑（Rh）等活性催化物质。对三元催化剂进行封装与汽车排气系统进行集成，封装后的三元催化剂一般称为三元催化器。三元催化器（TWC）将汽油发动机排气中的主要有害污染物如HC、CO和NOx,转化为无害的H2O、CO2和N2。汽油机为达到"国六"阶段排放标准要求，除了TWC以外，部分车辆还需要配备GPF（Gasoline Particulate Filter,汽油机颗粒捕集器）与TWC配合使用。
柴油机：富氧燃烧造成与汽油机不同的后处理模式，“国六”标准要求柴油机采取DOC+DPF+SCR+ASC模式。根据前文对柴油机和汽油机工作原理的介绍，柴油机需要在富氧环境下工作，而汽油机TWC系统无法在富氧环境下工作，因此柴油机无法使用TWC系统。由于柴油机尾气中排放的NOx和PM在生成机理上存在此消彼长效应，一般是通过柴油机内净化（EGR）技术，控制柴油机尾气中NOx或PM的排放量，再通过加装柴油机外尾气污染治理装备，如通过内循环控制PM或在内循环控制NOx排放后使用柴油机颗粒捕集系统（DOC+DPF、DPF、DOC+POC）等，控制另一种污染物排放量。美国等地尿素价格与柴油相当，更偏好第二种方式，而欧洲和我国尿素价格仅为柴油价格的40%-60%左右，出于经济性考虑更多采用第一种方式。而“国六”标准的到来，需要DOC+DPF+SCR+ASC互相配合，才能达到“国六”要求的排放标准。

国六标准下柴油车的第二种技术路线是DOC+DPF+Hi-SCR。该种技术路线相比DOC+DPF+SCR+ASC模式取消了EGR，用高效SCR予以替代，通过调节气门改善进气量，使气缸进气充分，让燃料在缸中高温富氧条件下充分燃烧，减少PM排放量，但会造成尾气中氮氧化物浓度增加，此时就需要更高效的Hi-SCR装置进行还原反应，来使PM排放量达到国六标准。目前主流路线还是DOC+DPF+SCR+ASC。

图33：“国六”标准要求柴油机采取DOC+DPF+SCR+ASC模式

EGR：“国六”标准下将广泛应用于汽油机、柴油机和天然气重卡。EGR（发动机废气再循环）系统是发动机的废气机内净化装置，主要采取机内物理净化方式，通过将发动机废气重新引入气缸循环燃烧，直接在发动机内降低氮氧化物浓度，其主要工作原理是根据发动机的转速、负荷、温度、进气流量、排气流量等情况，通过传感器将相关参数转化成电信号传输给控制单元（ECU），ECU控制执行器件适时打开，排气中的部分废气通过EGR阀的调配进入进气系统，并与新鲜混合气一起再次进入气缸参与燃烧，并降低燃烧温度。对于柴油发动机而言，EGR可以将含有大量CO2气体的发动机废气重新引入发动机气缸，使气缸中混合气体中的CO2浓度降低，从而减少NOx的排放量；对于汽油发动机而言，通过废气回路系统可以稀释发动机中的氮浓度，有效降低低负荷区泵气损失，降低最高燃烧压力和温度，抑制爆震，提高压缩比和热容比，从而提高汽油发动机的燃油效率。“国六”实施后，EGR在柴油机中的渗透率将接近100%，在汽油机中渗透率将逐步提高。
图 34：“国六”将促进 EGR 渗透率进一步提高

表 18：汽油机与柴油机 EGR 用处不同

<table>
<thead>
<tr>
<th>区别</th>
<th>目的</th>
<th>作用机制</th>
<th>作用效果</th>
</tr>
</thead>
<tbody>
<tr>
<td>柴油机</td>
<td>降低 NOx</td>
<td>降低发动机燃烧温度,稀释混合气氧浓度</td>
<td>EGR 率的增加与 NOx 的减少几乎呈线性关系,满足“国四”对 NOx 的排放要求, EGR 率应为 15%</td>
</tr>
<tr>
<td>汽油机</td>
<td>抑制超级爆震</td>
<td>降低缸内的燃烧温度</td>
<td>EGR 率从 5%开始,燃烧相位已经处于最佳位置附近,EGR 率为 20%时,涡前温度最多降低了 120℃</td>
</tr>
<tr>
<td>汽油机</td>
<td>提高燃油经济性</td>
<td>增大节气门开度,降低泵气损失</td>
<td>EGR 率为 20%时对应的节油率最大,约为 7.9%;当进一步提高 EGR 率时,节油效果受到限制</td>
</tr>
</tbody>
</table>

SCR: 搭配车用尿素，专门处理 NOx，燃油经济性更好，为“国五”及之后标准的必备路线。柴油机选择性催化还原器型产品（SCR）的主要功能是降低柴油机尾气中的 NOx 排放，SCR 在我国自“国四”阶段开始批量应用，也是“国五”阶段柴油机后处理的主要技术路线。SCR 系统主要由还原剂喷射系统、还原剂库存装置和输送管路、SCR 催化器以及各种传感器组成，通过一套电子控制的喷射系统，根据柴油车的运行工况以及排放情况向柴油机尾气直中喷射适量的还原剂,还原剂发生水解反应产生的 NH₃ 与尾气中的 NOx 在 SCR 催化器中发生系列还原反应,生成 N₂和 H₂O 排出。相对于其他技术路线，采用 SCR 后处理技术路线，对发动机的燃油经济性较好，NO₂排放比例低，对尾气中 NOx 的清除效率高，并且对柴油中的硫含量耐受度较高（硫元素过高会造成 EGR 净化效果降低）。

数据来源：卡车之家，西南证券整理

数据来源：中国知网，西南证券整理
DOC: EGR 之后的第一道尾气氧化工序，用于处理 CO、HC 和部分 PM 颗粒物。柴油机氧化催化器（DOC）的主要功能是将柴油发动粗气机中的一氧化碳（CO）和碳氢化合物（HC）以及颗粒物排放（PM）中的可溶性有机成分（SOF）与氧气在贵金属的催化作用下发生化学反应转化为水和二氧化碳。柴油机氧化催化器（DOC）的强氧化性可同时将部分一氧化氮（NO）氧化成二氧化氮（NO2）。柴油机氧化催化器（DOC）一般是通过在蜂窝陶瓷载体或金属载体的载体壁上涂上多孔的活性氧化铝（γ-Al2O3）作为第二载体，以增大内壁的比表面积。在氧化铝涂层中还需添加各种稀土金属氧化物作为催化助剂，以及以铂（Pt）为主的贵金属等活性催化物质制作而成。

DPF：颗粒物杀手，分为主动再生式和被动再生式。柴油机颗粒捕集器型产品（DPF）的主要作用是通过颗粒物沉降和吸附的原理大幅降低柴油机尾气中的颗粒物排放。通过堵塞通道等手段，减缓排气速度，迫使发动机尾气流经通道壁，从而使大多数颗粒物吸附于通道壁而被捕集下来。被捕集下来的颗粒物通过高温燃烧清除或在催化剂的作用下被氧化清除，使得捕集器可以循环往复地使用，这种使 DPF 恢复转化效率的过程称为“DPF 再生”。
按照尾气流通方式可以分为部分流式颗粒捕集器（FT-DFP，也称 POC）和壁流式颗粒捕集器（WF-DFP）。通常情况下，部分流式颗粒捕集器过滤效率可以达到40%~80%，而壁流式颗粒捕集器的过滤效率可达到90%以上。按照再生方式，DFP 还可以分为主动再生式和被动再生式。

图 37：DPF 主要用于捕捉 PM 颗粒物

<table>
<thead>
<tr>
<th>DPF 分类</th>
<th>主要工作原理</th>
</tr>
</thead>
<tbody>
<tr>
<td>部分流式颗粒捕集器（FT-DFP）</td>
<td>部分流式颗粒捕集器（FT-DFP）由钛酸铝、堇青石、金属丝网或金属薄片等材质通过特定工艺和结构设计制作而成，是可大量过滤和吸附颗粒物（PM）的部分通透式结构体。部分结构形式的 FT-DFP 被称为 POC（柴油机颗粒氧化催化剂）。DOC+POC 可降低柴油机尾气中的 CO、HC 和 PM 排放，其中 DOC 主要清除发动机尾气中的一氧化碳（CO）和碳氢化合物（HC），同时可将 NO 转化为 NO2、NO2 具有强氧化性，在一定温度条件下即可将 POC 中过滤捕集的颗粒物（主要是 C）氧化成 CO2 排出，实现系统循环使用。DOC+POC 是轻型柴油机动车达标国 IV 排放标准的主要后处理技术路线</td>
</tr>
<tr>
<td>壁流式颗粒捕集器（WF-DFP）</td>
<td>壁流式颗粒捕集器一般是以堇青石蜂窝陶瓷或碳化硅等高孔隙率的材料通过特定工艺和结构设计制作而成，采取将排气完全通过壁面过滤的方式降低柴油机颗粒物排放。由于大部分柴油机颗粒物粒径大于壁面孔隙，所以被壁面拦截，从而起到对柴油机尾气的净化作用。</td>
</tr>
<tr>
<td>主动式</td>
<td>具有较高的颗粒物（PM）净化率（70%-90%），不需要加入车用尿素，但需要额外添加燃油，以便燃烧掉 DPF 中捕集的颗粒物（PM），保持 DPF 可循环使用，即实现 DPF 再生，发动机燃油经济性差，不易堵塞，系统标定复杂，对硫敏感</td>
</tr>
<tr>
<td>被动式</td>
<td>具有较高的颗粒物（PM）净化率（70%-90%），不需要加入车用尿素及额外添加燃油，过滤后捕集的颗粒物在催化剂的作用下燃烧，使得 DPF 可循环使用，即实现 DPF 的再生，售后成本较高，燃油经济性差，对硫敏感，易堵塞，系统标定较简单</td>
</tr>
</tbody>
</table>

数据来源：艾可蓝、凯龙高科招股说明书，西南证券整理
ASC: “国六”新增系统，捕捉 SCR 逸出的氨气。ASC 是氨气捕捉器的缩写，一般安装在排气装置的最末端，也就是 SCR 装置后面。由于在 SCR 中对 NOx 的还原借助于车用尿素产生的氨气，而部分未反应完全的氨气可能将泄漏至大气中，造成新的污染。ASC 即通过催化氧化作用降低排气中未参与尾气催化而泄漏出的氨气（NH3），是 SCR 系统的补充。“国五”及之前标准对氨气（NH3）排放没有具体要求，“国六”标准则对其有了限值，所以 ASC 属于“国六”标准下催生的新型装置。

表20：各类尾气后处理系统介绍

<table>
<thead>
<tr>
<th>后处理产品</th>
<th>名称</th>
<th>处理对象</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOC</td>
<td>柴油氧化催化剂（Diesel Oxidation Catalyst）</td>
<td>CO、HC、SOF</td>
<td>以贵金属作为催化氧化 CO、HC、SOF</td>
</tr>
<tr>
<td>DPF</td>
<td>柴油颗粒物捕集器（Diesel Particulate Filter）</td>
<td>颗粒物</td>
<td>通过过滤器捕集排气中的微粒，并于过滤体内适时燃烧</td>
</tr>
<tr>
<td>SCR</td>
<td>柴油车选择性催化还原催化剂（Selective Catalytic Reduction Catalyst）</td>
<td>NOx</td>
<td>通过催化剂产生氨气，通过氨气将氧化氮还原为无害的氮气</td>
</tr>
<tr>
<td>POC</td>
<td>柴油颗粒氧化催化剂/器（Particle Oxidation Catalyst）</td>
<td>颗粒物</td>
<td>通过尾气的高温燃烧掉颗粒物</td>
</tr>
<tr>
<td>EGR</td>
<td>废气再循环系统（Exhaust Gas Recirculation）</td>
<td>NOx</td>
<td>通过废气再循环降低 NOx，再加 DOC+POC 处理其他气体和颗粒物</td>
</tr>
<tr>
<td>ASC</td>
<td>氨气氧化催化剂/器（Ammonia Slip Catalyst）</td>
<td>NH3、NOx</td>
<td>将 SCR 排出的过量氨气氧化为氨气、一氧化氮、NOx，再催化 NOx 和氨气为氮气</td>
</tr>
<tr>
<td>TWC</td>
<td>汽油车用三元催化剂（Three-way Catalyst）</td>
<td>CO、HC、NOx</td>
<td>将 CO、HC、NOx 氧化/还原为无害气体和水</td>
</tr>
<tr>
<td>GPF</td>
<td>汽油机颗粒捕集器（Gasoline Particulate Filter）</td>
<td>颗粒物</td>
<td>通过过滤器捕集排气中的微粒，并于过滤体内适时燃烧</td>
</tr>
</tbody>
</table>

后处理系统产业链：中游涂覆体现各系统竞争实力。后处理系统的上游原材料包括催化剂（蜂窝陶瓷、氧化铝、稀土金属、沸石、钯基、贵金属、衬垫和管材钢带等）、电子元器件（NOx 传感器、压力传感器、温度传感器、单片机、控制芯片、加热水阀、线束等）、尿素箱（用于 SCR）、喷射系统（用于 SCR）和法兰等，属于尾气处理系统产业链上游。原材料经中游厂商催化剂涂覆和封装后，进入下游内燃机、机动车、非道路移动机械和船舶厂商，进行整体集成。产业链中涂覆环节主要将各类催化剂、催化助剂和涂层加在载体内，此环节考验各厂商竞争实力，一般采用固定蜂窝陶瓷作为催化剂的基本载体，将多孔的活性氧化铝涂敷在载体上作为涂层，用于增加催化剂的催化面积；在涂层上添加贵金属或其他化学物质作为催化剂；在涂层上加入稀土金属氧化物作为催化助剂，部分尾气后处理产品无需添加助剂即可实现净化效果。

后处理系统成长确定性强。由于后处理系统单车价值量稳定，且结合国外经验及国内以往经验，在机动车整体产销稳定情况下，环保政策带来的国标切换可为后处理系统带来稳定的增量市场，此块市场成长确定性强。
图 38：后处理系统产业链涉及公司众多

数据来源：西南证券整理

2.1.2 车用尿素：“国六”驱动车用尿素成为卡车司机必备消费品，单车用量与普及率全面升级

车用尿素（AdBlue）：纯度决定 NOx 排放控制情况。车用尿素是指尿素浓度为 32.5% 且溶剂为超纯水的尿素水溶液。尿素原料为工业提纯而来，当浓度低于 28% 时一般就会造成 NOx 超标排放，而 32.5% 的浓度下车用尿素溶液结晶点最低（初始结晶点-11℃），可以保证 NOx 排放有效控制与结晶点的平衡，实际使用中在-20℃时会完全上冻，因此在我国东北等地售卖的车用尿素技术含量较高，需要通过加入改性剂降低溶液凝固点。由于 SCR 催化剂载体极易发生金属离子中毒从而失去催化效果，因此车用尿素中的超纯水必须使用电子行业一级超纯水（电阻率≥18MΩ·cm），除超纯水中金属离子的控制，还要控制车用尿素中不溶物、醛、缩二脲、磷酸盐的含量，低质量尿素可造成尿素喷嘴和排气管堵塞。

图 39：车用尿素（AdBlue）结合 SCR 系统可大幅降低 NOx 排放

图 40：车用尿素在 SCR 系统中发生的化学反应

数据来源：四川美丰官网，西南证券整理

数据来源：中国知网，西南证券整理

务必阅读正文后的重要声明部分
“国五”柴油货车尿素普及率约 70%，预计“国六”尿素在重卡中将全面普及。由于 SCR 从 2014 年“国四”实施后开始应用于柴油重卡，车用尿素市场自 2014 年开始成长，但“国四”车辆没有涉及对柴油重卡尿素用量不达标的驾驶性能限制。根据我们草根调研结果，“国四”车辆司机反馈，由于监管落实不到位，处罚较轻，后期很多“国四”司机不会主动添加尿素。“国五”车在尿素余量过低或质量过差情况下，会有10%-20%左右的扭矩限制，造成加速等动力不足，开车“没劲”，车龄较长的“老司机”驾驶时会有明显感受，同时出于对新车爱护、物流公司集中为“国五”司机采购等因素影响，尿素在“国五”司机中约有70%左右的普及率。

“国六”单车尿素用量油耗占比 8%以上，超过“国五”用量近三倍。从用量上看，“国五”重卡司机普遍反应在“国五”排放标准下，每百公里加注尿素 1.5-2 公斤，考虑到重卡司机每百公里油耗在 35-40L 左右（考虑空车和满载两种情况之下的平均数），则单车尿素用量占柴油消耗的比例大约为 4%-5%，与四川美丰（中石化系统内公司，车用尿素主要销往西南地区）年报披露的3%-5%相匹配。根据前文“国五” SCR 路径占比，“国五”阶段轻卡大约有 70%左右配装 SCR，即需要添加车用尿素。“国六”标准下，尿素单车用量大约在 8%以上，考虑到 30%的“国五”司机不会添加车用尿素，以及“国五”轻卡 SCR 排放路径 70%的渗透率，实际上“国六”单车尿素消耗量接近“国五”阶段三倍左右。

车用尿素成为卡车司机必备消费品，“国六”阶段重卡司机年消费尿素约 8400 元。目前中档车用尿素售价在 30 元/10 公斤左右，卡车司机每年行驶里程约 10 万公里，以重卡、中卡、轻卡司机每百公里油耗 35L左右，10L 左右为测算依据，结合上文“国六”标准下车用尿素单车油耗占比约 8%，则重卡、中卡、轻卡司机每年在车用尿素上的花费约 8400 元，6000 元，2400 元左右。车用尿素将成为卡车司机必备消费品，且具有高消耗性。

表22: 车用尿素成为卡车司机必备消费品，“国六”阶段重卡司机年消费尿素约 8400 元左右

<table>
<thead>
<tr>
<th>货车型号</th>
<th>每百公里油耗 (升)</th>
<th>行驶里程 (万公里/年)</th>
<th>平均油耗 (千升)</th>
<th>尿素/油耗</th>
<th>年均尿素消耗 (吨)</th>
<th>终端售价 (元/吨)</th>
<th>卡车司机年均消费尿素 (元)</th>
</tr>
</thead>
<tbody>
<tr>
<td>轻卡 (1.8-6T)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>8%</td>
<td>0.8</td>
<td>3000</td>
<td>2400</td>
</tr>
<tr>
<td>中卡 (6-14T)</td>
<td>25</td>
<td>10</td>
<td>25</td>
<td>8%</td>
<td>2</td>
<td>3000</td>
<td>6000</td>
</tr>
<tr>
<td>重卡 (14T以上)</td>
<td>35</td>
<td>10</td>
<td>35</td>
<td>8%</td>
<td>2.8</td>
<td>3000</td>
<td>8400</td>
</tr>
</tbody>
</table>

数据来源：草根调研，西南证券整理

2.2 尾气处理系统：“国六”标准下迎来全面升级，2020-25 合计增量市场超四千亿

2.2.1 汽油机：TWC 升级+新装 GPF+EGR 渗透率提高，“国六”阶段年均新增 330 亿市场

汽油机“国六”尾气处理系统单车价值量增加 1000-3100 元，提升幅度达 100%-310%。通过对艾可蓝、凯龙高科、隆盛科技等上市公司披露的单价及相关信息调研，我们大概得出汽油尾气处理系统的单价变化，其中新国标下，汽油机 TWC 系统将达到 800-1000 元，TWC 系统的价格有所上涨，“国六” TWC 单价较“国五” TWC 单价高 1000 元左右，部分汽油机将采用 TWC+GPF 方式，GPF 单价在 800 元左右，此外 EGR 系统可以使通过内循环方式,
有效控制进入TWC系统的污染气体，同时降低汽油机油耗，避免发动机爆震。但目前汽油机EGR系统不像柴油机渗透率高，根据中国产业信息网数据，2016年EGR在汽油机渗透率仅为8%。2017年之后“国五”、“国六”相继落实，汽油机EGR渗透率也有相应提高，假设2018年汽油机EGR渗透率20%，参考欧美发达国家汽油机EGR渗透率提升速度，假设我国乘用车汽油机EGR渗透率自2018年起每年提升10%，EGR单价约为650元，考虑到汽油机存在同时加装EGR和GPF的可能，则“国六”时代汽油机后处理系统单车价值增量达1000元（只提升TWC单价）-3100元（提升TWC单价同时加装GPF、EGR系统），提升幅度达100%-310%。

为测算汽油机尾气后处理市场增长情况，我们做出以下假设：

假设1：汽油乘用车产量，受新能源车渗透率提升及传统汽油机乘用车保有量市场趋于稳定的影响，假设未来五年汽油机乘用车产量每年下降25万辆。2025年汽油机乘用车产量为1850万辆，较2019年减少7.4%。

假设2：汽油商用车产量，近四年汽油商用车产量CAGR达12%，目前汽油商用车主要集中在大型客车及微卡、和部分轻卡，假设未来汽油机产量按10%增速增长。

假设3：TWC单价，参考艾可蓝招股说明书，假设“国五”TWC单价约为1000元，“国六”TWC单价约为“国五”阶段两倍，达2000元，参考中国知网相关论文，国外GPF单价为90美元-150美元（不含再生成本），则以800元作为国内GPF单价。

假设4：GPF渗透率，由于北京、上海等地在2019年便开始实行汽油车“国六”标准，预计2019-2021年“国六”尾气处理系统渗透率分别为50%、80%、100%，其中GPF在“国六”尾气处理系统中的渗透率为60%。

假设5：根据中国产业信息网数据，“国五”阶段汽油机EGR系统单价650元，“国六”阶段EGR单价提升一倍达1300元，2016年汽油机EGR渗透率约为8%，随着“国五”、“国六”推动，假设2018年EGR渗透率为20%，此后每年增加5%。

假设6：汽油机尾气后处理系统年降2%。

表23：“国六”标准下，汽油机尾气处理系统路径与单价均有所提高（单位：元）

<table>
<thead>
<tr>
<th>后处理系统</th>
<th>国五</th>
<th>国六</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>汽油机</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TWC</td>
<td>1000</td>
<td>2000</td>
<td>全部使用，单价提升100%</td>
</tr>
<tr>
<td>GPF</td>
<td>800</td>
<td>1300</td>
<td>部分“国六”车使用</td>
</tr>
<tr>
<td>EGR</td>
<td>650</td>
<td>1300</td>
<td>渗透率每年提升10%</td>
</tr>
<tr>
<td>合计</td>
<td>1000或1650</td>
<td>2000-4100</td>
<td>提升幅度达100%-310%</td>
</tr>
</tbody>
</table>

数据来源：艾可蓝招股说明书、中国知网，西南证券整理

表24：汽油机乘用车产量受新能源车冲击，汽油商用车产量保持增长（单位：万辆）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>汽油乘用车</td>
<td>1997</td>
<td>1975</td>
<td>1950</td>
<td>1925</td>
<td>1900</td>
<td>1875</td>
<td>1850</td>
</tr>
<tr>
<td>汽油商用车</td>
<td>116</td>
<td>127</td>
<td>140</td>
<td>154</td>
<td>169</td>
<td>186</td>
<td>205</td>
</tr>
<tr>
<td>合计</td>
<td>2113</td>
<td>2102</td>
<td>2090</td>
<td>2079</td>
<td>2069</td>
<td>2061</td>
<td>2055</td>
</tr>
</tbody>
</table>

数据来源：wind，西南证券测算
表 25: 预计 2025 年，汽油机后处理市场规模达 578 亿元，较 2019 年同比+37.8%（单位：亿元）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TWC</td>
<td>317</td>
<td>371</td>
<td>401</td>
<td>391</td>
<td>381</td>
<td>371</td>
<td>362</td>
</tr>
<tr>
<td>DPF</td>
<td>51</td>
<td>79</td>
<td>96</td>
<td>94</td>
<td>91</td>
<td>89</td>
<td>87</td>
</tr>
<tr>
<td>EGR</td>
<td>52</td>
<td>72</td>
<td>91</td>
<td>102</td>
<td>111</td>
<td>121</td>
<td>129</td>
</tr>
<tr>
<td>合计</td>
<td>419</td>
<td>522</td>
<td>589</td>
<td>586</td>
<td>583</td>
<td>581</td>
<td>578</td>
</tr>
</tbody>
</table>

数据来源: wind，西南证券测算

汽油机 2020-25 年尾气后处理增量市场达 1963 亿元，平均每年新增 327 亿元。我们假设根据上述测算结果，2025 年汽油机乘用车与商用车后处理系统市场规模为 578 亿元，较 2019 年同比+37.8%，其中 TWC、DPF、EGR 市场规模分别为 371 亿元、89 亿元、121 亿元。如果将“国六”阶段汽油机尾气处理系统全部换成“国五”标准，则 2020-25 年六年累计市场增量达 1963 亿元，平均每年增加 327 亿元。

表 26: “国六”实施后，汽油机尾气后处理系统 2020-25 年六年平均年增 327 亿元市场空间（单位：亿元）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>全以“国五”标准测算</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>246</td>
<td>245</td>
<td>1476</td>
</tr>
<tr>
<td>“国六”实施后</td>
<td>419</td>
<td>522</td>
<td>589</td>
<td>586</td>
<td>583</td>
<td>581</td>
<td>578</td>
<td>3439</td>
</tr>
<tr>
<td>增量市场</td>
<td>174</td>
<td>276</td>
<td>343</td>
<td>340</td>
<td>337</td>
<td>335</td>
<td>332</td>
<td>1963</td>
</tr>
</tbody>
</table>

数据来源: wind，西南证券测算

2.2.1 柴油货车：EGR+DOC+DPF+SCR+ASC 尾气处理模式全渗透，年均新增 383 亿市场

柴油重卡尾气处理系统单件价值量增加 23800 元，提升幅度达 298%。柴油机轻卡与重卡处理路线在“国五”阶段有所不同，差别主要源自 SCR 系统单件价值量不同以及系统组合不同。“国五”标准下，轻卡主要有 EGR+DOC+DPF（单价分别为 650+1400+5000 元），和燃油优化+SCR 两种模式（轻卡 SCR 单价为 4000 元），重卡主要采用燃油优化+SCR 模式（重卡 SCR 单价为 8000 元），“国六”则全部采用 EGR+DOC+DPF+SCR+ASC 系统。“国六”标准下，轻卡尾气处理系统单件价值量增加 16050-19100 左右，提升幅度达 228%-478%，重卡单车价值量增加 23800，提升幅度达 298%。

表 27: “国六”标准下，柴油轻卡尾气处理系统单件价值量最高提升 19100 元，重卡提升 23800 元（单位：元）

<table>
<thead>
<tr>
<th>货车车型</th>
<th>后处理系统</th>
<th>国五</th>
<th>国六</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td>轻卡</td>
<td>EGR</td>
<td>650</td>
<td>1300</td>
<td>国五轻卡采用 SCR 和 EGR+DOC+DPF 两种路径</td>
</tr>
<tr>
<td></td>
<td>DOC</td>
<td>1400</td>
<td>2800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DPF</td>
<td>5000</td>
<td>10000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SCR</td>
<td>4000</td>
<td>8000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASC</td>
<td></td>
<td>1000</td>
<td></td>
</tr>
<tr>
<td>合计</td>
<td></td>
<td>4000 7050</td>
<td>23100</td>
<td></td>
</tr>
<tr>
<td>重卡</td>
<td>EGR</td>
<td>1500</td>
<td></td>
<td>重卡 NOx 排放量较多，因此更注重 SCR 系统的使用</td>
</tr>
<tr>
<td></td>
<td>DOC</td>
<td>2800</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DPF</td>
<td>10000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
尾气后处理行业专题报告

<table>
<thead>
<tr>
<th>货车车型</th>
<th>后处理系统</th>
<th>国五</th>
<th>国六</th>
<th>备注</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SCR</td>
<td>8000</td>
<td>16000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASC</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合计</td>
<td></td>
<td>8000</td>
<td>31800</td>
<td></td>
</tr>
</tbody>
</table>

数据来源：wind，西南证券测算

假设 1：柴油车产量稳定，由于基建拉动等原因，预计今年国内重卡、轻卡销量累计增幅将超 20%。假设 2020 柴油重卡产量 140 万辆，柴油轻卡产量 150 万辆（由于柴油中卡、微卡产量较少，为方便计算，将柴油中卡、微卡计入轻卡），2021 年起柴油货车产量保持 2019 年的产量规模，柴油重卡年产量 120 万辆，柴油轻卡年产量 130 万辆，且 2021 年之后所有销售车型均为“国六”车型。

假设 2：“国六”轻卡中，SCR 路径占 70%，EGR+DPF+DOC 路径占比 30%。

假设 3：根据艾可蓝、凯龙高科、威孚高科等公司公告和招股说明书，以及中国产业信息网相关数据，我们测算出各类尾气处理系统单价变化情况如下：“国五”阶段，轻卡 EGR 单价 650 元，SCR 单价 4000 元，DPF 单价为 5000 元，DOC1400 元；重卡 SCR 单价 8000 元。“国六”阶段，各类尾气处理系统单价翻倍，新增 ASC 系统轻卡单价为 1000 元，重卡单价为 1500 元，此外重卡 EGR 系统单价达 1500 元。

假设 4：柴油机尾气后处理系统年降 2%。

表 28：预计 2020 年柴油货车产量超预期，2021-25 年柴油货车产量保持稳定（单位：万辆）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>“国六”合计</td>
<td>36</td>
<td>106</td>
<td>195</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>——轻卡</td>
<td>19</td>
<td>55</td>
<td>100</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>——重卡</td>
<td>17</td>
<td>51</td>
<td>95</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>“国五”合计</td>
<td>208</td>
<td>184</td>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>——轻卡</td>
<td>108</td>
<td>95</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>——重卡</td>
<td>100</td>
<td>89</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>合计</td>
<td>244</td>
<td>290</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
</tr>
<tr>
<td>——轻卡</td>
<td>127</td>
<td>150</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>——重卡</td>
<td>117</td>
<td>140</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

数据来源：wind，西南证券测算

表 29：预计 2025 年，柴油货车后处理市场规模达 600 亿元，较 2019 年同比增长 151.5%（单位：亿元）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>“国六”合计</td>
<td>99</td>
<td>283</td>
<td>512</td>
<td>641</td>
<td>627</td>
<td>614</td>
<td>600</td>
</tr>
<tr>
<td>——轻卡</td>
<td>44</td>
<td>125</td>
<td>222</td>
<td>282</td>
<td>276</td>
<td>270</td>
<td>264</td>
</tr>
<tr>
<td>EGR</td>
<td>2</td>
<td>7</td>
<td>12</td>
<td>16</td>
<td>16</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>SCR</td>
<td>15</td>
<td>43</td>
<td>77</td>
<td>98</td>
<td>96</td>
<td>94</td>
<td>92</td>
</tr>
<tr>
<td>DOC</td>
<td>5</td>
<td>15</td>
<td>27</td>
<td>34</td>
<td>33</td>
<td>33</td>
<td>32</td>
</tr>
<tr>
<td>DPF</td>
<td>19</td>
<td>54</td>
<td>96</td>
<td>122</td>
<td>120</td>
<td>117</td>
<td>114</td>
</tr>
<tr>
<td>ASC</td>
<td>2</td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>12</td>
<td>11</td>
</tr>
</tbody>
</table>

请务必阅读正文后的重要声明部分
柴油货车 2020-25 年尾气处理市场新增 2448 亿元，六年年均新增 408 亿元。根据上述测算结果，2025 年柴油货车尾气后处理系统市场规模为 600 亿元，为 2019 年的 2.5 倍，其中重卡后处理系统合计为 336 亿元，轻卡后处理系统合计为 264 亿元。2025 年 SCR 系统市场规模达 240 亿元，重卡 SCR 系统占比 65%，EGR、DOC、DPF、ASC 市场规模分别为 31 亿元、62 亿元、220 亿元与 27 亿元。如果将“国六”阶段柴油货车尾气处理系统全部换成“国五”标准，则 2020-25 年六年累计市场增量达 2448 亿元，平均每年增加 408 亿元。

表 30："国六"实施后，柴油货车尾气处理系统 2020-25 年六年平均年增 248 亿元市场规模（单位：亿元）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>全以“国五”标准测算</td>
<td>156</td>
<td>186</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>985.2</td>
</tr>
<tr>
<td>“国六”实施后</td>
<td>239</td>
<td>405</td>
<td>547</td>
<td>641</td>
<td>627</td>
<td>614</td>
<td>600</td>
<td>3434</td>
</tr>
<tr>
<td>增量市场</td>
<td>83</td>
<td>219</td>
<td>387</td>
<td>481</td>
<td>467</td>
<td>454</td>
<td>440</td>
<td>2448</td>
</tr>
</tbody>
</table>

数据来源：wind，西南证券测算

2.3 车用尿素："国六"尿素单车用量与普及率全面提升，2025 年尿素市场规模为 19 年 7.3 倍

与后处理系统不同，车用尿素属于高消耗消费品，市场规模受货车保有量结构影响。后处理系统加装在出厂汽车上，因此每年的市场规模基数来自汽车产量。车用尿素则是行驶的柴油货车均需添加的必备消费品，所以需要测算不同国标（“国三”、“国四”、“国五”、“国六”）、不同类型（轻卡、中卡、重卡）的货车保有量数据（中卡油耗与重卡不同，但后处理路径可视为重卡路径，故前文未细分）。

请务必阅读正文后的重要声明部分
2018 年轻卡、重卡占柴油货车比例分别达 56% 和 38%，“国三”占比近半，“国五”占比超 15%。根据生态环境部《中国机动车环境管理年报（2019）》，2018 年柴油货车中轻卡和重卡为主要车型，分别占比达 56% 和 38%。2017 年“国五”标准正式实施，当年渗透率超 5%，2018 年“国五”及以上车型占比同比+10.0pp，“国三”、“国四”车辆 2018 年占比分别达 47.5%、36.4%，占比逐年下降。

<table>
<thead>
<tr>
<th>柴油货车国标</th>
<th>2017 年保有量占比</th>
<th>2018 年保有量占比</th>
</tr>
</thead>
<tbody>
<tr>
<td>国五</td>
<td>5.40%</td>
<td>15.40%</td>
</tr>
<tr>
<td>国四</td>
<td>41%</td>
<td>36.40%</td>
</tr>
<tr>
<td>国三</td>
<td>51.70%</td>
<td>47.50%</td>
</tr>
<tr>
<td>国二</td>
<td>1.90%</td>
<td>0.70%</td>
</tr>
</tbody>
</table>

数据来源：《中国机动车环境管理年报（2019）》，西南证券整理

表 32：2018 年轻卡、重卡占柴油货车比例分别达 56% 和 38%

<table>
<thead>
<tr>
<th>柴油货车</th>
<th>2018 年保有量 (万辆)</th>
<th>占比</th>
</tr>
</thead>
<tbody>
<tr>
<td>轻卡(1.8-6T)</td>
<td>1009.4</td>
<td>55.5%</td>
</tr>
<tr>
<td>中卡(6-14T)</td>
<td>123</td>
<td>6.8%</td>
</tr>
<tr>
<td>重卡(>14T)</td>
<td>685.4</td>
<td>37.7%</td>
</tr>
<tr>
<td>合计</td>
<td>1817</td>
<td>100%</td>
</tr>
</tbody>
</table>

数据来源：《中国机动车环境管理年报（2019）》，西南证券整理

预计“国三”、“国四”车在 23、26 年彻底退出，25 年“国六”车保有量占比超 70%。结合“国四”从 08 年禁售，到 18 年基本全部报废，卡车平均寿命以新标准发布为起点，大约在 10 年左右，目前“国三”、“国四”禁售时间分别为 2014、2017 年，且各地“国三”淘汰政策趋严，因此我们假定“国三”、“国四”彻底退出时间为 2024 年和 2027 年。同时，各大卡车主机厂基本在 2018 年底、2019 年开始发布自身新款“国六”卡车，“国六”车已经实现销售。为测算“国三”、“国四”、“国五”、“国六”车未来市场情况，我们做出以下假设。

假设 1：由于国内汽车市场、特别是柴油车市场进入稳定期，保有量基本稳定，在测算市场规模时我们假设柴油货车总体保有量维持在 1820 万辆。

假设 2：参照过去新车型渗透率情况，假设 2019 年，“国六”卡车渗透率为 2%，此后“国六”车保有量按照后处理系统产量模型中产量每年累加，且 2025 年前不会淘汰“国六”车辆。

假设 3：“国三”、“国四”车按十年寿命线性减少，分别于 2024 和 2027 年退出市场（“国三”每年减少 144 万辆，“国四”每年减少 83 万辆）

假设 4：以“国六”为未来五年的最高标准（即便“国七”标准在未来五年内施行，更严格的环保政策只会让尿素用量只增不减）
表 33：2020-2025 年柴油货车不同车型保有量预测（单位：万辆）

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>国六</td>
<td>36</td>
<td>142</td>
<td>337</td>
<td>587</td>
<td>837</td>
<td>1087</td>
<td>1337</td>
<td></td>
</tr>
<tr>
<td>——轻卡</td>
<td>17</td>
<td>68</td>
<td>160</td>
<td>280</td>
<td>400</td>
<td>520</td>
<td>639</td>
<td></td>
</tr>
<tr>
<td>——中卡</td>
<td>1</td>
<td>6</td>
<td>14</td>
<td>24</td>
<td>34</td>
<td>44</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>——重卡</td>
<td>17</td>
<td>68</td>
<td>163</td>
<td>283</td>
<td>403</td>
<td>523</td>
<td>643</td>
<td></td>
</tr>
<tr>
<td>国五</td>
<td>280</td>
<td>485</td>
<td>606</td>
<td>637</td>
<td>614</td>
<td>591</td>
<td>568</td>
<td>400</td>
</tr>
<tr>
<td>——轻卡</td>
<td>155</td>
<td>269</td>
<td>336</td>
<td>354</td>
<td>341</td>
<td>328</td>
<td>315</td>
<td>222</td>
</tr>
<tr>
<td>——中卡</td>
<td>19</td>
<td>33</td>
<td>41</td>
<td>43</td>
<td>42</td>
<td>40</td>
<td>38</td>
<td>27</td>
</tr>
<tr>
<td>——重卡</td>
<td>106</td>
<td>183</td>
<td>228</td>
<td>240</td>
<td>231</td>
<td>223</td>
<td>214</td>
<td>151</td>
</tr>
<tr>
<td>国四</td>
<td>662</td>
<td>579</td>
<td>496</td>
<td>414</td>
<td>331</td>
<td>248</td>
<td>165</td>
<td>83</td>
</tr>
<tr>
<td>——轻卡</td>
<td>367</td>
<td>322</td>
<td>275</td>
<td>230</td>
<td>184</td>
<td>138</td>
<td>92</td>
<td>46</td>
</tr>
<tr>
<td>——中卡</td>
<td>45</td>
<td>39</td>
<td>34</td>
<td>28</td>
<td>22</td>
<td>17</td>
<td>11</td>
<td>6</td>
</tr>
<tr>
<td>——重卡</td>
<td>250</td>
<td>218</td>
<td>187</td>
<td>156</td>
<td>125</td>
<td>94</td>
<td>62</td>
<td>31</td>
</tr>
<tr>
<td>国三</td>
<td>864</td>
<td>720</td>
<td>576</td>
<td>432</td>
<td>288</td>
<td>144</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——轻卡</td>
<td>480</td>
<td>400</td>
<td>320</td>
<td>240</td>
<td>160</td>
<td>80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——中卡</td>
<td>58</td>
<td>49</td>
<td>39</td>
<td>29</td>
<td>19</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>——重卡</td>
<td>326</td>
<td>271</td>
<td>217</td>
<td>163</td>
<td>109</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>合计</td>
<td>1818</td>
<td>1820</td>
<td>1820</td>
<td>1820</td>
<td>1820</td>
<td>1820</td>
<td>1820</td>
<td>1820</td>
</tr>
<tr>
<td>——轻卡</td>
<td>1002</td>
<td>1008</td>
<td>1000</td>
<td>984</td>
<td>964</td>
<td>945</td>
<td>926</td>
<td>907</td>
</tr>
<tr>
<td>——中卡</td>
<td>122</td>
<td>122</td>
<td>119</td>
<td>114</td>
<td>107</td>
<td>101</td>
<td>94</td>
<td>87</td>
</tr>
<tr>
<td>——重卡</td>
<td>681</td>
<td>690</td>
<td>701</td>
<td>722</td>
<td>748</td>
<td>774</td>
<td>800</td>
<td>825</td>
</tr>
</tbody>
</table>

数据来源：《中国机动车环境管理年报（2019）》，西南证券测算

根据前文对尿素用量，“国五”、“国六”后处理路径及货油耗情况分析，我们可通过以下条件测算车用尿素实际用量：

假设 1：“国五”货车车用尿素普及率为 70%。
假设 2：“国五”轻卡后处理路径中，SCR 渗透率达 70%。
假设 3：货车司机每年行驶里程约 10 万公里，以重卡、中卡、轻卡司机每百公里油耗 35L、25L、10L。
假设 4：”国五”标准下，车用尿素占油耗比重为 4%-5%，“国六”标准下，车用尿素占油耗比重为 8%。
假设 5：车用尿素售价稳定不变。
表 34：2025 年车用尿素市场需求量为 2019 年 7.3 倍 (单位：万吨)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>国六</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>——轻卡</td>
<td>14</td>
<td>54</td>
<td>128</td>
<td>224</td>
<td>320</td>
<td>416</td>
<td>511</td>
<td></td>
</tr>
<tr>
<td>——中卡</td>
<td>3</td>
<td>12</td>
<td>27</td>
<td>48</td>
<td>68</td>
<td>89</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>——重卡</td>
<td>49</td>
<td>192</td>
<td>458</td>
<td>794</td>
<td>1130</td>
<td>1466</td>
<td>1802</td>
<td></td>
</tr>
<tr>
<td>国五</td>
<td>146</td>
<td>253</td>
<td>316</td>
<td>332</td>
<td>320</td>
<td>308</td>
<td>296</td>
<td>208</td>
</tr>
<tr>
<td>——轻卡</td>
<td>38</td>
<td>66</td>
<td>82</td>
<td>87</td>
<td>83</td>
<td>80</td>
<td>77</td>
<td>54</td>
</tr>
<tr>
<td>——中卡</td>
<td>17</td>
<td>29</td>
<td>36</td>
<td>38</td>
<td>36</td>
<td>35</td>
<td>34</td>
<td>24</td>
</tr>
<tr>
<td>——重卡</td>
<td>129</td>
<td>224</td>
<td>280</td>
<td>294</td>
<td>283</td>
<td>273</td>
<td>262</td>
<td>185</td>
</tr>
<tr>
<td>合计</td>
<td>182</td>
<td>397</td>
<td>752</td>
<td>1175</td>
<td>1632</td>
<td>2089</td>
<td>2546</td>
<td>2909</td>
</tr>
<tr>
<td>——轻卡</td>
<td>38</td>
<td>80</td>
<td>137</td>
<td>215</td>
<td>308</td>
<td>400</td>
<td>493</td>
<td>566</td>
</tr>
<tr>
<td>——中卡</td>
<td>17</td>
<td>32</td>
<td>48</td>
<td>65</td>
<td>84</td>
<td>103</td>
<td>122</td>
<td>133</td>
</tr>
<tr>
<td>——重卡</td>
<td>127</td>
<td>285</td>
<td>568</td>
<td>895</td>
<td>1240</td>
<td>1586</td>
<td>1931</td>
<td>2210</td>
</tr>
</tbody>
</table>

数据来源：草根调研、《中国机动车环境管理年报（2019）》, 西南证券测算

2025 年车用尿素销售规模 2909 万吨，为 2019 年的 7.3 倍，重卡占比 76%。根据中国产业信息网数据，2019 年车用尿素用量为 197.7 万吨，而根据我们模型测算，2019 年实际车用尿素消耗量为 397 万吨。结合行业专家信息，我们推断差额主要源于统计口径不同，产业信息网数据统计口径以较高品质的车用尿素为主，并且统计口径更加严格，可能忽略了低品质的尿素。根据《中国机动车环境管理年报（2019）》, 西南证券测算，2025 年车用尿素市场需求量为 2019 年的 7.3 倍，重卡占比 76%。

预计 2025 年车用尿素市场规模达 524 亿元，重卡市场规模近 400 亿元。根据我们草根调研，尿素低端品牌售价仅为 20 元/kg，悦泰海龙等代工品牌售价一般在 30-35 元/kg 左右，可兰素、四川美丰等高端品牌零售价格售价可达 40-50 元/kg，结合以上数据，以 30 元/kg 为尿素的平均售价，考虑到汽车用尿素毛利率约 40%，则车用尿素出厂价约为 1800 元/吨。根据我们草根调研，尿素低端品牌售价仅为 20 元/kg，悦泰海龙等代工品牌售价一般在 30-35 元/kg 左右，可兰素、四川美丰等高端品牌零售价格售价可达 40-50 元/kg，结合以上数据，以 30 元/kg 为尿素的平均售价，考虑到汽车用尿素毛利率约 40%，则车用尿素出厂价约为 1800 元/吨。根据草根调研结果，尿素低端品牌售价仅为 20 元/kg，悦泰海龙等代工品牌售价一般在 30-35 元/kg 左右，可兰素、四川美丰等高端品牌零售价格售价可达 40-50 元/kg，结合以上数据，以 30 元/kg 为尿素的平均售价，考虑到汽车用尿素毛利率约 40%，则车用尿素出厂价约为 1800 元/吨。

表 36：“国六”实施后，车用尿素 2020-25 年六年累计新增市场 1016 亿元，平均年增 169 亿元（单位：亿元）

<table>
<thead>
<tr>
<th>增量市场规模</th>
<th>2019</th>
<th>2020</th>
<th>2021</th>
<th>2022</th>
<th>2023</th>
<th>2024</th>
<th>2025</th>
<th>2020-25 年合计</th>
</tr>
</thead>
<tbody>
<tr>
<td>国六实施后</td>
<td>62</td>
<td>91</td>
<td>121</td>
<td>151</td>
<td>182</td>
<td>212</td>
<td>226</td>
<td>983</td>
</tr>
<tr>
<td>仅国五路径</td>
<td>71</td>
<td>135</td>
<td>211</td>
<td>294</td>
<td>376</td>
<td>458</td>
<td>524</td>
<td>1999</td>
</tr>
<tr>
<td>增量市场</td>
<td>9</td>
<td>45</td>
<td>91</td>
<td>142</td>
<td>194</td>
<td>246</td>
<td>298</td>
<td>1016</td>
</tr>
</tbody>
</table>

数据来源：草根调研、《中国机动车环保年报（2019）》，西南证券测算

3 格局：后处理系统迎接国产替代，尿素市场龙头市占率不断提升

3.1 后处理系统：SCR 等各细分领域国产龙头推进国产替代

“国六”拉近国标与欧标时间差，促进后处理系统国产替代。“国五”及“国五”阶段之前，欧标等国外标准领先于国内，国外公司凭借在技术上的先发优势占据了较多的市场份额。“国六”标准部分指标不仅追平欧洲，甚至超越“欧六”，成为全球最严排放指标，为前期有较多经验积累的本土公司弥补了与国外后处理龙头之间的时间差优势，国产替代进程加速。

SCR、TWC、后处理载体进口替代空间广阔。根据《中国内燃机工业年鉴》数据，我国主要的后处理部件均具有一定的自主厂商份额，其中 EGR、DPF、DOC 自主厂商市场份额超过 50%，而在 SCR 和 TWC 领域自主厂商占有率相对较低，国产替代空间大。在后处理载体市场中，康宁、NGK 目前占据市场的主要份额，前福环保和国瓷材料（子公司王子制陶负责蜂窝陶瓷制造）的份额正在逐步崛起。“国六”落地有望加速其国产替代的进程。

EGR 领域：EGR 市场集中度高，隆盛科技成为本土 EGR 龙头。在商用车上，银轮股份、隆盛科技等国内厂商进行持续的研发投入与技术积累，产品具有较高的性价比，已经具有较高的市场份额。内燃机协会数据也显示，2018 年柴油机 EGR 装机量为 100 万辆，车型以轻型车为主，其中隆盛科技 EGR 市占率约 35%，位列行业第一，美国博格华纳与皮尔博格（银轮股份与其合资成立皮尔博格银轮）市占率分别为 28%、24%，CR3 市占率达到 87%，市场集中度较高。其中，银轮股份 EGR 产品在重卡领域，尤其是天然气重卡领域具有较强竞争力；隆盛科技在轻型商用车领域市占率较高。在乘用车上，美国博格华纳、德国大陆集团、德尔福、日本京滨等国际汽车零部件供应商具有技术和研发上的优势，市场份额处于领先地位。
图41: EGR 市场集中度高，隆盛科技成为本土 EGR 龙头

数据来源：《中国内燃机工业年鉴(2019)》，西南证券整理

DPF 领域：国产厂商市场份额约 60%，威孚高科子公司威孚力达市占率第一。根据内燃机工业年鉴，2017 年轻型商用车中，总计有约 37 万辆装配了 DPF。其中威孚为行业龙头，配套量约 10 万套左右，市占率达到 27%。外资厂商市场份额约为 40%，主要是优美科、巴斯夫、庄信万丰。国产厂商市场份额约 60%，其中威孚、长城、艾瑞、凯龙等国产厂商市场份额相对领先。

DOC 领域：博世为 DOC 龙头，国产厂商竞争相对分散。根据内燃机工业年鉴，2017 年轻型柴油商用车销量约 95 万套，其 DOC 供应商结构较为多元化。博世为行业龙头，销量达 25 万套，市场占有率达 26%。但整体来看，外资企业市占率并不高，博世、康明斯、弗吉亚合计市占率约为 39%，国产厂商市占率合计为 60%左右。威孚力达、艾可蓝、恒和、凯龙高科在国内厂商中占有较高的份额。

图42：2017 年国产 DPF 市占率约 60%，威孚力达市占率第一

图43：2017 年博世为 DOC 龙头，国产厂商竞争相对分散

数据来源：《中国内燃机工业年鉴(2018)》，西南证券整理

重卡 SCR：凯龙高科 13.9%，市占率排名本土第一。根据凯龙高科招股说明书，2017 年，天纳克、康明斯、凯龙高科、银轮股份和威孚力达市占率排名前五，分别为 22.0%、15.8%、13.9%、10.5% 和 8.8%，前两名均为外资企业，凯龙高科排名本土第一。

轻卡 SCR：艾可蓝市占 12.3%。根据凯龙高科招股说明书，2017 年，外资企业博世和康明斯分别占据 33.1%和 13.3%的轻卡 SCR 市场份额，两家外企合计市占
率 46.4%，市场地位较高。内资企业中，轻卡 SCR 市占率排名前三的企业为艾可蓝、恒和环保与凯龙高科，分别为 12.3%、10.6% 和 9.3%。随着“国六”标准切换，内资企业未来市占率有望提升。

图 44: 2017 年凯龙高科重卡 SCR 市占率 13.9%
图 45: 2017 年艾可蓝轻卡 SCR 市占率 12.3%

3.2 车用尿素：“国六”提升高质量车用尿素市场份额，品质龙头龙蟠科技受益

“国六”严控下，质量成为车用尿素重要竞争壁垒之一。根据我们草根调研的结果，在使用尿素过程中，42%的受访者认为质量是自身使用尿素最关注的一点，其次是卖家可靠度（20%）、价格（19%）、品牌（18%）、渠道（1%）。由于“国五”及“国六”标准监管逐渐变严，以及“国五”、“国六”车渗透率提升，劣质尿素带来的尾气排放不达标和堵塞排气管等问题成为司机关注的重点，尿素市场有望向高品质产品集中的趋势。而卖家的可靠程度、品牌一定程度上与尿素品质相关。在品质同等情况下，司机更愿意选择性价比高的尿素产品。

图 46: 2017 年艾可蓝轻卡 SCR 市占率 12.3%
尿素向高价格、高品质市场集中。在 “国五”阶段，尿素价格主要以 30 元/10kg 以下为主，但在分国标交叉统计中，“国五”车司机价格承受能力明显高于“国四”车，说明随着国标趋严，司机对尿素质量的要求提高，对尿素价格的承受能力也随之提高。尿素价格与品质直接相关，车用尿素的原料为尿素和超纯水，部分小作坊使用自来水代替超纯水，大幅缩减成本，但也带来尾气排放超标、堵塞排气管等问题。预计随着“国六”车渗透率提升，车用尿素有望向高品质市场集中，带来终端消费均价提升。

图 47: 目前 30 元/10kg 以下的中低端尿素为销售主力（单位：元/10kg）

<table>
<thead>
<tr>
<th>价格区间（单位：元/10kg）</th>
<th>国四</th>
<th>国五</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-20</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>20-25</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>25-30</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>30-35</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>35 以上</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

数据来源：草根调研，西南证券整理

渠道为车用尿素另一大竞争壁垒，经销模式目前渠道占比 80%。据草根调研，物流公司会从经销商（物流园、修车厂、轮胎店等）处集中采购车用尿素并在发车前给司机进行补充，规模越大，车龄越新的物流车队使用的车用尿素价格和品质越高。据可兰素专家估算，公司尿素经销渠道占比在 80% 左右，经销占尿素销售渠道的大头。加油站一般为司机尿素用完时，临时购买尿素的地方，渠道占比 20% 左右，且国有加油站不会把尿素作为核心赢利点，有时采取加油送尿素，或者买二送一的方式，因此经销渠道还是目前车用尿素销售的主要渠道。

加注站为添加尿素新模式，未来或与经销渠道平分秋色。据可兰素专家资料，加注设备本身成本仅为 5000 元左右，加注尿素物化在 2.9-3 元/kg，较桶装有所优惠。根据欧洲加注站发展历程，2005 年“欧四”标准实行后，欧洲地区车用尿素加注站迅速铺开，欧洲前五大重型柴油车制造商联合多家著名物流公司、化工企业、石化公司就加油站建设 AdBlue 供应站，共同促进 AdBlue 的市场供应。据欧洲汽车工业协会（ACEA）统计，2004 年欧洲仅有 60 个加注点，到 2007 年就猛增到 1700 多个，2012 年已接近 3000 个。
计，2010 年车用尿素销量就达到了 200 万吨以上，而且欧洲车用尿素销售已形成网络，经
销商或零售点与尿素泵站 2 种形式各占一半，全欧洲范围内的加油站都可以买到车用尿素。

图 48：“欧四”标准实施后，欧洲车用尿素加注站猛增

数据来源：中国知网，西南证券整理

龙蟠科技旗下可兰素品牌认可度排名第一，加快推进智慧驿站（尿素加注站）建设。根
据草根调研数据，在全国性质的尿素品牌中，可兰素品质受到司机一致认可，获得 3.8 分排
名第一（满分 5 分），之后分别为昆仑之星 (3.6 分)、悦泰海龙 (3.4 分)、四川美丰 (2.9
分) 等品牌，渠道布局较少或质量较差的小品牌得分较低，验证了质量与渠道成为车用尿素
的两大核心竞争力。同时，可兰素效仿欧洲尿素加注站模式，目前在全国拥有 3000 个智慧
驿站（尿素加注站），并为中石油、中石化、中海油提供了尿素加注站设备，其中中海油尿
素加注站可添加可兰素品牌的尿素，公司渠道与产品质量优势逐渐扩大。

图 49：可兰素品质认可度排名车用尿素市场第一（单位：分）

数据来源：草根调研，西南证券整理
积极扩张产能，尿素龙头市占率稳步提升。2019年可兰素拥有15万吨的车用尿素设计产能，能耗利用率达130%，则公司实际产能为20万吨，对应收入4.57亿元，则公司产品出厂价大约为2285元/吨，高于行业平均水平（1800元/吨）。根据前文测算结果，2019年行业实际需求量378万吨，则公司市占率为5.3%，以车用尿素市场规模口径测算，2019年行业市场规模为457亿元，受益于公司产品品质领先，单价高于行业均值，公司占率为6.7%。近期，可兰素拟发行可转债，募投资金用于新能源冷却液和天津车用尿素产能建设，按公司披露天津厂一期产能为18万吨，二期产能尚在规划，设计产能为17万吨，则投产后公司设计产能将达50万吨，考虑工艺提升等提高产能利用率的方式，实际产能将高于50万吨。同时公司还将积极探寻代工模式，进一步扩张产能，迎接车用尿素市场的增长。随着可兰素的积极扩张，公司未来有望凭借质量与渠道优势将自身市占率水平提升至10%，预计2025年车用尿素收入达到目前的十倍（约50亿元）。

4 投资推荐

4.1 龙蟠科技：品牌+渠道铸就车用尿素龙头，扩产推动公司市占率提升

公司业务覆盖车用尿素、润滑油、冷却液，旗下“可兰素”为国内车用尿素龙头品牌。公司以润滑油业务起家，现已形成集润滑油、发动机冷却液、柴油发动机尾气处理液（车用尿素）、车用养护品等于一体的车用环保精细化学品体系。公司旗下产品包括“可兰素”车用尿素、“龙蟠”润滑油、“龙蟠”冷却液、“3ECARE”车用养护品等多个产品品牌，产品广泛用于汽车整车制造、汽车后市场、工程机械等领域，品牌认可度高，其中子公司可兰素为国内车用尿素龙头。2020年前三季度公司收入13.7亿元，同比12.6%，归母净利润1.4亿元，同比增长52.1%，其中毛利率的车用尿素收入占比提升（20H1收入占比达35.3%，同比增长10.7pp），推动公司业绩释放。

“可兰素”品牌和渠道优势明显，市占率有望持续提升。在“国六”标准下，低质尿素杂质将加大NOx排放，造成车辆限速和罚款，渠道布局广的高质量尿素龙头有望受益，行业集中度将持续提升。“可兰素”品牌认可度和渠道布局领先全行业。品牌方面，2010年及2011年公司车用尿素产品先后通过美国石油学会API柴油发动机排放处理液认证及德国
VDA-QMC 对车用尿素产品的 AdBlue 商标认证，是国内最早达到国际标准的尿素产品；渠道方面，公司在渠道铺设全面，涵盖主机厂配套、在巩固物流园、大修厂、高速公司等经销渠道同时，在全国布局 3000 多家尿素加注站，并为中石油、中石化、中海油提供了尿素加注站设备，市占率有望持续提升。

积极扩张产能，预计 2025 年尿素产能有望达到现在十倍以上。2019 年可兰素拥有 15 万吨的车用尿素设计产能，产能利用率达 130%，公司实际产能为 20 万吨，市占率约 5.3%。近期，可兰素拟发行可转换债，募投资金用于新能源冷却液和天津车用尿素产能建设。据公司披露，天津工厂车用尿素一期产能为 18 万吨，二期产能尚在规划，设计产能为 17 万吨，扩产后公司设计产能将达 50 万吨，考虑工艺提升等提高产能利用率的方式，实际产能将超 50 万吨。同时公司还将积极探寻代工模式，进一步扩张产能。随着可兰素的积极扩产，公司未来有望凭借质量与渠道优势将自身市占率水平提升至 10%，预计 2025 年车用尿素产能达到目前的十倍 (约 300 万吨)。

图 52：龙蟠科技 2020 年前三季度收入 13.7 亿元，同比+12.6%

图 53：龙蟠科技 2020 年前三季度归母净利润 1.4 亿元，同比+52.1%

图 54：龙蟠科技 20H1 车用尿素收入占比 35.3%，同比+10.7pp

图 55：龙蟠科技车用尿素毛利率高于其他业务

数据来源：Wind，西南证券整理
4.2 艾可蓝：本土轻卡 SCR 龙头，有望受益于国产替代和“国六”标准普及

轻卡 SCR 市占率位列本土企业第一，后续发力中重卡、汽油机及非道路机械。公司于 2009 年由北美归国博士团队创立，2020 年 2 月在深圳创业板上市，专业从事汽车柴油机尾气处理产品的研发与产业化，产品覆盖 SCR、DOC、DPF、ASC、TWC 及GPF 等尾气后处理系统。2020 年前三季度公司收入5.7 亿元，同比+27.1%，归母净利 1.0 亿元，同比+24.7%，其中 SCR 系统占比 83.8%，公司 SCR 主要应用于轻卡，根据中国汽车工业协会统计数据及公司产品销量，2019 年公司 SCR 产品在轻型柴油货车的市占率为 12.29%，同比+2.5pp。

公司已完成“国六”产品小批量、规模化供货，“国六”全面铺开将进一步推动公司收入提升。目前，公司完成了符合“国六”排放标准的催化剂配方的全系开发（DOC、DPF、SCR、ASC、TWC）和电控喷射系统开发，具备了“国六”标准柴油机尾气后处理系统（DOC+DPF+SCR+ASC）和汽油机尾气后处理（TWC+GPF）供货能力，并实现小批量和规模化供货。根据我们测算，到 2025 年，轻卡、重卡后处理系统市场空间分别为 139、407 亿元，较 19 年增长 73%和 95%，其中 2025 年轻卡 SCR 和重卡 SCR 系统分别为 46 亿元和 112 亿元，汽油机 TWC 和 GPF 市场空间分别为 226 亿元、82 亿元。目前“国六”标准已在部分地区实施，随着 2021 年“国六”标准的全面铺开，公司有望迎来收入快速提升。

国产化替代+配套客户增加+产品线拓宽，公司市占率有望持续提升。“国五”及“国五”阶段之前，欧标等国外标准领先于国内，国外公司凭借技术上的先发优势占据了较多的市场份额。“国六”标准出台后，国产公司凭借在技术上的先发优势占据了较多的市场份额。公司客户从全柴动力、云内动力、福田汽车等货车厂商进一步向中重卡、非道路机械及汽油机市场拓展，发展了新客户包括三一重卡、东风汽车、中国重汽、江淮汽车、江西五十铃、玉柴股份等行业内知名企业，产品线紧跟环保政策，从最初的柴油机 DOC+POC 系统拓展到柴油机 DPF、SCR、ASC 及汽油机 TWC+GPF 等系统。公司各类产品市占率有望持续提升。
图 58：艾可蓝 2020 年前三季度收入 4.5 亿元，同比+8.3%

图 59：艾可蓝 2020 年前三季度归母净利润 0.9 亿元，同比+10.9%

图 60：艾可蓝 2019 年 SCR 收入占比 83.7%

图 61：艾可蓝 2019 年 SCR 毛利率达 36.0%

图 62：艾可蓝 2020 年前三季度毛利率 36.5%，净利率 19.8%

图 63：艾可蓝费用管控能力良好

数据来源：Wind，西南证券整理
4.3 奥福环保：蜂窝陶瓷载体龙头，打破 NGK、康宁等国外龙头垄断

深耕蜂窝陶瓷载体研发和生产，蜂窝陶瓷毛利率达 55% 以上。公司深耕于柴油车用蜂窝陶瓷载体的研发和生产，是国内蜂窝陶瓷龙头，2020 前三季度公司收入 2.2 亿元，同比+15.3%，归母净利润 0.4 亿元，同比+25.0%，毛利率 54.4%，净利率 28.1%。蜂窝陶瓷为公司第一大收入贡献点，2019 年收入占比在 90%，毛利率维持在 55% 以上。公司客户包含中国重汽、上柴动力、玉柴动力、云内动力等汽油机、柴油机和燃气机主机厂。

蜂窝陶瓷国产替代龙头，市占率不断提升。国内车用陶瓷载体市场被国外龙头占据，其中美国康宁公司和日本 NGK 公司国内合计市占率高达 90% 左右。公司已打破国外垄断的局面，取得的型式核准证书数量仅次于 NGK 和康宁，位于国内载体厂商首位。2016-2018 年，奥福环保所生产的 SCR 载体数量在国内商用货车（绝大多数为柴油车）载体市场的占有率分别为 3.50%、8.06%、9.49%，市占率不断提升。

图 64：奥福环保 2020 年前三季度收入 2.2 亿元，同比+15.3%

图 65：奥福环保 2020 年前三季度归母净利润 0.4 亿元，同比+25.0%

图 66：奥福环保 2020 年前三季度毛利率 54.4%，净利率 28.1%

图 67：奥福环保 2020H1 蜂窝陶瓷收入占比 83.6%

数据来源：Wind，西南证券整理
4.4 国瓷材料：陶瓷材料平台型公司，蜂窝陶瓷迎来放量

内生+外延构筑陶瓷材料平台型公司。公司通过内生+外延掌握了催化材料、电子材料、生物医疗材料、5G 材料等关键基础材料关键技术，并可以提供全套汽车尾气催化材料。2016 年公司通过收购江苏天诺、江苏博晶实现分子筛及铈锆固溶体先进技术的突破，2017 年收购王子制陶，蜂窝陶瓷技术不断进步，提供蜂窝陶瓷及其配套方案给行业龙头巴斯夫和庄信万丰等客户。2019 年公司成立催化材料事业部，将催化业务板块放在目前首要位置，集中优势资源开拓“国六”市场，积极进行催化材料全产业链布局。

2020H1 催化材料收入同比+74.3%，蜂窝陶瓷放量兑现。随着“国六”标准的实施，公司蜂窝陶瓷等尾气催化产品放量兑现。汽油机方面，GPF 和薄壁 TWC 均已进入国内主流主机厂目录且从 2019 年下半年开始进行批量销售；柴油机方面，公司以国内主流主机厂为开拓目标，SCR 及 DPF 已完全实现量产并通过了国内外主流催化公司验证，气体机载体已开始大批量销售。2019 年实现营业收入 21.5 亿元，收入占比 19.8%，其中催化材料收入 2.1 亿元，收入占比 9.6%；2020H1 公司实现营业收入 10.8 亿元，同比+4.27%，其中催化材料收入 1.4 亿元，同比+74.3%，收入占比 12.7%。

图 68：国瓷材料 2020 年前三季收入 18.3 亿元，同比+18.9%

图 69：国瓷材料 2020 年前三季归母净利润 4.2 亿元，同比+15.9%

图 70：国瓷材料 2020 年前三季毛利率 47.1%，净利率 24.6%

图 71：国瓷材料 2020H1 催化材料收入占比达 12.7%

数据来源：Wind，西南证券整理

数据来源：Wind，西南证券整理

数据来源：Wind，西南证券整理

数据来源：Wind，西南证券整理
4.5 威孚高科：DPF 国内龙头，产品均衡覆盖后处理各类系统

产品均衡覆盖后处理系统各类产品，DPF 国内龙头。公司主要产品包括高压共轨喷射系统和 DPF、SCR、DOC、POC 等尾气后处理材料及系统。根据《内燃机》，公司在 DPF、DPC、重卡 SCR、轻卡 SCR 中的市占率分别为 27%、12%、9%、7%，其中 DPF 市占率国内第一。

“国六”促进后处理相关产品放量。2020 前三季度公司实现营收 99.2 亿元，同比+57%；实现归母净利 22.3 亿元，同比+29.2%。根据公司 2020 年中报披露，公司后处理板块的主要收入来源——子公司威孚力达 20H1 实现营收达 33.1 亿元，同比+147%；实现净利润 0.89 亿元，相比去年同期的 0.33 亿元，大幅增长了 172%，净利润增速超过营收增速，规模效应明显。未来随着后处理市场空间的进一步扩大，威孚力达的营收和净利率有望继续提升。

图 72：威孚高科 2020 年前三季度收入达 99.2 亿元，同比+57.0%

图 73：威孚高科 2020 年前三季度归母净利润达 22.3 亿元，同比+29.2%

图 74：威孚高科投资净收益拉动公司净利润水平

图 75：2020H1 威孚高科汽车后处理系统收入占比达 50.0%

数据来源：Wind，西南证券整理
4.6 银轮股份：热管理龙头，内生外延布局后处理市场

公司尾气处理业务收入占比和毛利率不断提升。公司深耕热交换 40 余年，是国内热管理龙头，不锈钢油冷器、铝油冷器、电池冷却器等在全球市场占有率领先。近年来尾气处理产业链成为新增长点。2020 年前三季度公司收入 45.1 亿元，同比增长 16.9%，归母净利 2.8 亿元，同比 +9.1%，毛利率 24.8%，净利率 6.8%。公司尾气处理业务占比不断提升，20H1 实现收入 4.3 亿元，同比增长 47.2%，收入占比 14.1%，同比 +3.7pp，毛利率 25.0%，同比 +16.5pp。

EGR 冷却器龙头，未来有望受益于 SCR 及 EGR 系统放量。公司尾气处理业务目前主要包括 SCR、EGR、DPF 和 DOC。公司通过内生外延，不断强化尾气处理系统布局。与 2018 年国内 EGR 市占率第三的皮尔博格合资成立皮尔博格银轮，与法国佛吉亚合资成立佛吉亚银轮专攻 SCR 系统。目前公司商用车 EGR 冷却器产品具备世界一流的技术水平，在国内商用车市场份额名列前茅，是潍柴、玉柴、锡柴、重汽 EGR 冷却器主要供应商，未来有望充分受益“国六”标准落地。

图 76：银轮股份 2020 年前三季度收入 45.1 亿元，同比增长 16.9%

图 77：银轮股份 2020 年前三季度归母净利 2.8 亿元，同比增长 9.1%

数据来源：Wind，西南证券整理

图 78：银轮股份 2020 年前三季度毛利率 24.7%，净利率 6.8%

图 79：银轮股份 2020H1 尾气处理系统收入占比 14.1%

数据来源：Wind，西南证券整理
4.7 隆盛科技：轻型商用车 EGR 龙头

柴油、汽油、非道路机械 EGR 系统全线发力。公司以 EGR 阀、冷却器、节气门作为支撑“国六”项目的三大核心产品。根据《中国内燃机工业年鉴》数据，公司在国内柴油与汽油 EGR 领域市占率分别为 35.0% (2018 年) 与 18.4% (2017 年)，产品主要配备在轻型商用车领域。在非道路市场，公司明确以康明斯、云内动力、全柴动力、新柴股份、中国一拖、玉柴股份、雷沃斗山、常发股份作为重点市场开拓，已经获得了 EGR 阀及节气门的全部预期项目。2019 年公司收入 4.1 亿元，其中排放处理收入 1.4 亿元，占比 35.1%。

“国六”阶段加快新产品研发。“国六”阶段公司加速投入新品研发，其中高压、低压 EGR 系统，包含 EGR 阀体部分和 EGR 冷却器部分的产品、进排节气门产品及高温传感器产品的“国六 a”阶段研发已基本完成，“国六 b”阶段研发正在推进。此外，公司在 2019 年 10 月通过博世“天然气喷射系统”A、B 样件阶段的实验验证，获得了博世该项目的定点供应商资格，其终端发动机客户包括康明斯等。公司拟于近期通过非公开发行的方式筹措资金，新增年产 9 万套天然气喷嘴气轨总成的产能。

图 80: 隆盛科技 2020 年前三季度收入 3.7 亿元，同比+34.1%

图 81: 隆盛科技 2020 年前三季度归母净利润 0.3 亿元，同比+48.1%

图 82: 隆盛科技 2020 年前三季度毛利率 26.9%，净利率 8.1%

图 83: 2020H1 隆盛科技 EGR 产品收入占比达 44.5%

数据来源: Wind，西南证券整理
4.8 凯龙高科：重卡 SCR 龙头，创业板即将上市

重卡 SCR 龙头，2017 年市占率达 13.9%。公司主导产品包括柴油机 SCR 尾气后处理系统、DOC/DPF 柴油机颗粒捕集系统、气体机尾气后处理系统等产品。根据《中国内燃机工业年鉴》 (2018 年) 及中国汽车工业协会统计，2017 年，凯龙高科重型柴油机 SCR 的销量为 22 万套，市占率达到 13.9%，仅次于天纳克和康明斯，位列行业第三与自主品牌第一；轻型柴油机 SCR 的销量为 6.5 万套，较上年度大幅增长。在天然气重卡所使用的三元催化剂封装领域中，2017 年凯龙高科产量为 1 万辆，市占率约 10%，位列行业第二。公司在技术实力与客户配套方面优势明显，“国六”阶段有望充分受益于 SCR 国产替代趋势。

图 84: 凯龙高科 2019 年收入 10.7 亿元，同比-8.1%

图 85: 凯龙高科 2019 年归母净利润 0.6 亿元，同比-19.4%

图 86: 凯龙高科 2019 年毛利率 31.1%，净利率 5.7%

图 87: 凯龙高科自主品牌中尾气处理系统收入占比超 80%

5 风险提示

汽车销量下滑、“国六”政策落地低预期、“国六”后处理技术路径变化。

数据来源：Wind，西南证券整理
分析师承诺

本报告署名分析师具有中国证券业协会授予的证券投资咨询执业资格并注册为证券分析师，报告所采用的数据均来自合法合规渠道。分析逻辑基于分析师的职业理解，通过合理判断得出结论，独立、客观地出具本报告。分析师承诺不曾因，不因，也将不会因本报告中的具体推荐意见或观点而直接或间接获取任何形式的补偿。

投资评级说明

公司评级
买入：未来6个月内，个股相对沪深300指数涨幅在20%以上
持有：未来6个月内，个股相对沪深300指数涨幅介于10%与20%之间
中性：未来6个月内，个股相对沪深300指数涨幅介于-10%与10%之间
回避：未来6个月内，个股相对沪深300指数涨幅介于-20%与-10%之间
卖出：未来6个月内，个股相对沪深300指数涨幅在-20%以下

行业评级
强于大市：未来6个月内，行业整体回报高于沪深300指数5%以上
跟随大市：未来6个月内，行业整体回报介于沪深300指数-5%与5%之间
弱于大市：未来6个月内，行业整体回报低于沪深300指数-5%以下

重要声明

西南证券股份有限公司（以下简称“本公司”）具有中国证券监督管理委员会核准的证券投资咨询业务资格。

本公司与作者在自身所知情范围内，与本报告中所评价或推荐的证券不存在法律法规要求披露或采取限制、静默措施的利益冲突。

《证券期货投资者适当性管理办法》于2017年7月1日起正式实施，本报告仅供本公司客户中的专业投资者使用，若您并非本公司客户中的专业投资者，为控制投资风险，请取消接收、订阅或使用本报告中的任何信息。本公司或关联机构可能会持有报告中提到的公司所发行的证券并进行交易，还可能为这些公司提供或争取提供投资银行或财务顾问服务。

报告中的信息均来源于公开资料，本公司对这些信息的准确性、完整性或可靠性不作任何保证。本报告所载资料、意见及推测仅反映本公司于发布本报告当日的判断，本报告所指的证券或投资标的的价格、价值及投资收入可升可跌，过往表现不应作为日后表现的依据。在不同时期，本公司可发出与本报告所载资料、意见及推测不一致的报告，本公司不保证本报告所含信息保持在最新状态。同时，本公司对本报告所含信息可在不发出通知的情形下做出修改，投资者应当自行关注相应的更新或修改。

本报告仅供参考之用，不构成出售或购买证券或其他投资标的要约或邀请。在任何情况下，本报告中的信息和意见均不构成对任何个人的投资建议。投资者应结合自己的投资目标和财务状况自行判断是否采用本报告所载内容及信息并自行承担风险，本公司及雇员对投资者使用本报告及其内容而造成的一切后果不承担任何法律责任。

本报告及附录版权为西南证券所有，未经书面许可，任何机构和个人不得以任何形式翻版、复制和发布。如引用须注明出处为“西南证券”，且不得对本报告及附录进行有悖原意的引用、删节和修改。未经授权刊载或者转发本报告及附录的，本公司将保留向其追究法律责任的权利。

请务必阅读正文后的重要声明部分
西南证券研究发展中心

上海
地址：上海市浦东新区陆家嘴东路 166 号中国保险大厦 20 楼
邮编：200120

北京
地址：北京市西城区南礼士路 66 号建威大厦 1501-1502
邮编：100045

重庆
地址：重庆市江北区桥北苑 8 号西南证券大厦 3 楼
邮编：400023

深圳
地址：深圳市福田区深南大道 6023 号创建大厦 4 楼
邮编：518040

西南证券机构销售团队

<table>
<thead>
<tr>
<th>区域</th>
<th>姓名</th>
<th>职务</th>
<th>座机</th>
<th>手机</th>
<th>邮箱</th>
</tr>
</thead>
<tbody>
<tr>
<td>上海</td>
<td>蒋诗烽</td>
<td>地区销售总监</td>
<td>021-68415309</td>
<td>18621310081</td>
<td>jsf@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>张方毅</td>
<td>高级销售经理</td>
<td>021-68413959</td>
<td>15821376156</td>
<td>zfyi@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>杨博睿</td>
<td>销售经理</td>
<td>021-68415861</td>
<td>13166156063</td>
<td>ybz@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>吴菲阳</td>
<td>销售经理</td>
<td>021-68415020</td>
<td>16621045018</td>
<td>wfy@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>付禹</td>
<td>销售经理</td>
<td>021-68415523</td>
<td>13761585788</td>
<td>fuyu@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>黄滢</td>
<td>销售经理</td>
<td>18818215593</td>
<td>18818215593</td>
<td>hying@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>蒋俊洲</td>
<td>销售经理</td>
<td>18516516105</td>
<td>18516516105</td>
<td>jiangjz@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>刘琦</td>
<td>销售经理</td>
<td>18612751192</td>
<td>18612751192</td>
<td>liuqi@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>崔露文</td>
<td>销售经理</td>
<td>15642960315</td>
<td>15642960315</td>
<td>clw@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>陈慧琳</td>
<td>销售经理</td>
<td>18523487775</td>
<td>18523487775</td>
<td>chhl@swsc.com.cn</td>
</tr>
<tr>
<td>北京</td>
<td>张岚</td>
<td>高级销售经理</td>
<td>18601241803</td>
<td>18601241803</td>
<td>zhanglan@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>彭博</td>
<td>销售经理</td>
<td>13391699339</td>
<td>13391699339</td>
<td>pbf@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>高妍琳</td>
<td>销售经理</td>
<td>15810809511</td>
<td>15810809511</td>
<td>gyl@swsc.com.cn</td>
</tr>
<tr>
<td>广深</td>
<td>王湘杰</td>
<td>地区销售副总监</td>
<td>0755-26671517</td>
<td>13480920685</td>
<td>wxj@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>林芷娴</td>
<td>高级销售经理</td>
<td>15012585122</td>
<td>15012585122</td>
<td>linzw@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>陈慧玲</td>
<td>高级销售经理</td>
<td>18500709330</td>
<td>18500709330</td>
<td>chl@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>谭凌岚</td>
<td>销售经理</td>
<td>13642362601</td>
<td>13642362601</td>
<td>tll@swsc.com.cn</td>
</tr>
<tr>
<td></td>
<td>郑龑</td>
<td>销售经理</td>
<td>18825189744</td>
<td>18825189744</td>
<td>zhengyan@swsc.com.cn</td>
</tr>
</tbody>
</table>

请务必阅读正文后的重要声明部分