风力发电成本结构拆分

机械设备

2021 年 10 月 23 日
风力发电成本结构拆分

2021年10月23日

本期内容提要:

本周专题：风力发电运营的总成本中设备折旧占绝对大比重，度电成本需考虑发电量因素，发电量与地区风能资源和风电机组条件紧密相关。随风电机组建设成本的持续下降，我国风力发电成本已降至较低水平，目前在对应上网电价0.45-0.50元/度的资源区，我们测算风力发电的度电成本约0.2元，考虑期间费用、资产减值以及所得税等因素的完全成本约0.30-0.35元/度，陆上风电已基本实现火电发电侧平价，而区别在于风电还有较大的降本空间。风电建设成本中设备购置占比最高，陆风超过70%，海风超过50%。风电整机成本构成中以叶片、齿轮箱和发电机为主。风电行业风机单机容量大型化是大趋势，单机大功率提高发电量，摊薄设备和非设备成本，同时降低风速要求，提高发电小时数，大兆瓦、高可靠性、高经济收益的风电项目占比逐步提升。金风科技上半年末的在手订单中3/4S平台机型订单容量超过8.6GW，占比从去年底的39%大幅提升至58%。

本周核心观点：(1)全面把握高端制造、智能制造主题，围绕工业装备数字化、工业互联自动化的大方向优选标的。重点推荐工业机器人国产龙头品牌埃斯顿、工业控制装置优势品种川仪股份，激光产业用控制系统柏楚电子等，关注工业自动化链条上优质标的埃夫特、汇川技术、双环传动等，建议关注DCS龙头并切入工业软件体系的中控技术、激光器龙头锐科激光；(2)把握“碳达峰，碳中和”主线，光伏设备领域，工艺迭代呈现加速趋势，高成长的贝塔叠加工艺更迭带来的设备更替需求，捷佳伟创、奥特维等公司持续推荐；锂电设备处在行业扩容的大赛道上，行业景气度抬升，设备公司具备贝塔属性，持续关注克来机电、先导智能等；核电领域，我们坚定认为核电是实现碳中和不可或缺的环节，重点推荐江苏神通、中密控股等；(3)把握低估值高成长逻辑主线，重点推荐板式家具设备龙头弘亚数控，防爆电器龙头华荣股份，电驱减速箱齿轮龙头双环传动，消防报警系统龙头青鸟消防、透平机械龙头陕鼓动力、动力系统测试设备龙头联测科技、自行车ODM企业久祺股份等；(4)考虑细分赛道上的长期稳定性和成长性，继续重点推荐广电计量、斯莱克、谱尼测试、龙马环卫、震安科技、豪迈科技、科德数控等，关注华测检测、安车检测、捷昌驱动、安徽合力等。

行业动态综述。2021年9月挖掘机(含出口)销量20085台，同比降低22.9%，短期需求承压;油气方面，全球油价重回80美元/桶，油
气勘探开发有望逐步回暖，管网加速建设的大逻辑正逐步兑现，建议重点关注油气装备行业；光伏方面，产业链整体供需将保持偏紧局面，需求和盈利提升驱动中游供应商扩产意愿不断增强，设备厂商率先受益。锂电方面，全球电动化趋势明确，动力电池厂商扩产积极性稳步提升，龙头设备企业有望充分受益。机器人方面，2021年9月我国工业机器人产量同比增长19.50%；汽车和3C需求开始回暖，此外，大基建和新基建加速，轨道交通、航空航天、医疗器械、工程机械等高端细分市场给机器人行业带来了不少新订单。

风险因素：全球疫情加速扩散，海外复工复产之后需求提振低于预期，国内后续经济增长乏力。
目录
风力发电成本结构拆分... 5
补贴退坡驱动风力发电加快平价.. 5
风力发电运维成本中设备折旧占绝对比重.................................... 6
风力发电建设成本中设备购置占比较高.. 9
风力发电成本构成中以叶片、齿轮箱和发电机为主.......................... 10
风力发电成本构成中以叶片、齿轮箱和发电机为主.......................... 10
风电整机成本构成中以叶片、齿轮箱和发电机为主.......................... 10
风电整机成本构成中以叶片、齿轮箱和发电机为主.......................... 10
风电整机成本构成中以叶片、齿轮箱和发电机为主.......................... 10
风电整机成本构成中以叶片、齿轮箱和发电机为主.......................... 10
风力发电成本结构有望继续下降.. 12
风力发电运维成本有望继续下降.. 13
本周动态及点评... 16
◎工程机械... 16
◎油服... 16
◎锂电设备... 17
◎其他... 17
本周重点上市公司动态.. 17
表 目 录
表 1：国内陆上风电上网电价历年来变化情况.................................... 5
表 2：国内海上风电上网电价（元/kWh）... 5
表 3：陆上风电和海上风电建设成本构成对比（%）............................... 10
表 4：三一重能主要发电模式发电量与发电小时数比................................ 8
表 5：2016-2020年三一重能风电业务经营数据.................................. 11
表 6：三一重能风电业务各发电模式发电小时数比................................ 8
表 7：陆上风电和海上风电建设成本构成对比（%）............................... 10
表 8：2016-2020年三一重能风电业务经营数据.................................. 11
表 9：2010年与2020年按区域划分的国家/地区陆上风电上网平均度电成本……14
表 10：2010年与2020年按区域划分的国家/地区海上风电上网平均度电成本……16
图 目 录
图 1：风力发电成本结构拆分... 6
图 2：风力发电成本结构拆分... 7
图 3：2020年三一重能风电成本构成... 7
图 4：2020年三一重能风电成本构成... 7
图 5：风力发电成本结构拆分... 7
图 6：2020年三一重能风电成本结构... 7
图 7：2010-2016年三一重能发电量平均风电成本.............................. 9
图 8：三一重能风电成本构成... 9
图 9：2020年三一重能风电成本构成... 10
图 10：2020年三一重能风电成本构成.. 10
图 11：风力发电成本结构拆分... 11
图 12：三一重能风电成本结构... 12
图 13：三一重能风电成本结构... 12
图 14：明阳智能风电成本结构... 12
图 15：明阳智能风电成本结构... 12
图 16：中广核海上风电成本构成.. 13
图 17：中广核海上风电成本构成.. 13
图 18：中广核海上风电成本构成.. 13
图 19：中广核海上风电成本构成.. 13
图 20：中广核海上风电成本构成.. 13
图 21：中广核海上风电成本构成.. 13
图 22：中广核海上风电成本构成.. 13
图 23：中广核海上风电成本构成.. 13
图 24：中广核海上风电成本构成.. 13
图 25：中广核海上风电成本构成.. 13
图 26：中广核海上风电成本构成.. 13
图 27：中广核海上风电成本构成.. 13
风力发电成本结构拆分

补贴退坡驱动风力发电加快平价

我国陆上风电发展自1986年开始至今，始终伴随政策支持和电力体制电价改革，先后经历了还本付息电价、风电特许权招标上网电价和陆地风电上网标杆电价3个阶段。自2009年起，陆上风电开始执行上网标杆电价，我国风电行业受补贴政策带动发展迅速，同时补贴也逐步退坡，驱动风电产业技术进步和发电成本逐步降低，使风电逐步平价上网。展望未来，成本为王，技术进步驱动风电成本进一步降低，“双碳”目标下风电相较于其他新能源的竞争优势也将持续增强，风电装机和并网需求有望持续提升。

我国先后对陆上风电上网标杆电价进行了多次调整，经过多次下调，陆上风电上网标杆电价已从最早的0.51元/kWh，下降到0.29-0.47元/kWh，降幅为23%-43%。且从2019年7月后改为竞价上网，新核准的集中式陆上风电项目上网电价全部通过竞争方式确定，不得高于项目所在资源区指导价。2019年1月1日至2020年底前核准的陆上风电项目，2021年底前仍未完成并网的，国家不再补贴。自2021年起，新核准的陆上风电项目全面实现平价上网，国家不再补贴。2022年起进入全面平价，新并网的项目均平价上网。

表1：国内陆上风电上网电价历年变化情况

<table>
<thead>
<tr>
<th>核准日期</th>
<th>I类资源区</th>
<th>II类资源区</th>
<th>III类资源区</th>
<th>IV类资源区</th>
<th>实施方案</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015年</td>
<td>0.51</td>
<td>0.54</td>
<td>0.58</td>
<td>0.61</td>
<td>标杆价</td>
</tr>
<tr>
<td>2016年</td>
<td>0.49</td>
<td>0.52</td>
<td>0.56</td>
<td>0.61</td>
<td>标杆价</td>
</tr>
<tr>
<td>2017年</td>
<td>0.47</td>
<td>0.5</td>
<td>0.54</td>
<td>0.6</td>
<td>标杆价</td>
</tr>
<tr>
<td>2018年</td>
<td>0.4</td>
<td>0.45</td>
<td>0.49</td>
<td>0.57</td>
<td>标杆价</td>
</tr>
<tr>
<td>2019年（1月1日后）</td>
<td>0.34</td>
<td>0.39</td>
<td>0.43</td>
<td>0.52</td>
<td>标杆价</td>
</tr>
<tr>
<td>2019年（7月1日后）</td>
<td>0.34</td>
<td>0.39</td>
<td>0.43</td>
<td>0.52</td>
<td>竞价</td>
</tr>
<tr>
<td>2020年</td>
<td>0.29</td>
<td>0.34</td>
<td>0.38</td>
<td>0.47</td>
<td>竞价</td>
</tr>
<tr>
<td>2021年</td>
<td>全面平价，不再补贴</td>
<td>平价</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

海上风电上网电价逐步退坡。2019年起海上风电标杆上网电价改为指导价，新核准海上风电项目全部通过竞争方式确定上网电价。2019年符合规划、纳入财政补贴年度规模管理的新核准近海风电指导价调整为每千瓦时0.8元，2020年调整为每千瓦时0.75元。新核准近海风电项目通过竞争方式确定的上网电价，不得高于上述指导价。新核准潮间带风电项目通过竞争方式确定的上网电价，不得高于项目所在资源区陆上风电指导价。对2018年底前已核准的海上风电项目，如在2021年底前全部机组完成并网的，执行核准时的上网电价；2022年及以后全部机组完成并网的，执行并网年份的指导价。

表2：国内海上风电上网电价（元/KWh）

<table>
<thead>
<tr>
<th>年份</th>
<th>近海风电</th>
<th>潮间带风电</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-2018年</td>
<td>0.85</td>
<td>0.75</td>
</tr>
<tr>
<td>2019年</td>
<td>0.8（指导价）</td>
<td>参考陆上风电指导价</td>
</tr>
<tr>
<td>2020年</td>
<td>0.75（指导价）</td>
<td>参考陆上风电指导价</td>
</tr>
</tbody>
</table>
| 2021年 | 0.75（指导价）（2018年底前核准的
需在2021年底前完成并网，否则
执行并网年份的指导价） | 参考陆上风电指导价 |

资料来源：国家发改委，信达证券研发中心
风电发电运营成本中设备折旧占绝大比重

风电运营企业通过利用风能、转换成电能并通过输电线路送入电网，风电运营的生产场所是风电场，风电场主要由五部分组成，1）风力发电机组：风电场的发电装置。2）道路：包括风力发电机旁的检修道路、变电站站内与站外道路、风电场内道路及风电场进出通道。3）集电线路：分散布置的风力发电机组所发电能的汇集、传送通道。4）变电站：电能升压配送中心。5）监控楼：风电场运行的监控中心。国内风电运营企业包括五大电力集团旗下风电业务、大型综合性能源企业以及其他民营和外资风电运营企业。

图1：风电运营企业梳理

五大电力集团
大型综合性能源企业
其他风电运营企业

其他大型国有综合性能源企业旗下风电业务板块代表企业包含：三峡集团、中广核集团、华润集团，该类企业同样在国内风电市场占有重要市场份额。

风电运营企业基本情况

<table>
<thead>
<tr>
<th>风电运营企业</th>
<th>基本情况</th>
</tr>
</thead>
<tbody>
<tr>
<td>龙源电力</td>
<td>龙源电力为国能投集团子公司，在香港联交所上市，是一家以新能源为主的大型综合性发电集团，在全国拥有约300多个风电场，以及光伏、生物质、潮汐、地热和火电等发电项目。截至2019年末，龙源电力风电控股装机容量2,003.2万千瓦。</td>
</tr>
<tr>
<td>大唐新能源</td>
<td>大唐新能源为大唐集团子公司，在香港联交所上市，主要从事风电等新能源的开发、投资、建设与管理；低碳技术的研发、应用与推广；新能源相关设备的研制、销售、检测与维修；电力生产：境内及海外工程设计、施工安装、检修与维护；新能源设备材料的研发与制造；对外贸易；节能环保等业务。截至2019年末，大唐新能源风电控股装机容量为953.3万千瓦，其他装机容量为22.8万千瓦。</td>
</tr>
<tr>
<td>华能新能源</td>
<td>华能新能源为华能集团子公司，主要从事新能源项目的投资、建设与运营，以风电开发与运营为核心，太阳能等可再生能源协同发展。截至2019年末，华能新能源累计并网装机容量1,193万千瓦。</td>
</tr>
<tr>
<td>华电福新</td>
<td>华电福新为华电集团子公司，拥有包括风电、太阳能、水力、核能等在内的多种电力类型。截至2019年末，华电福新风电控股装机容量803.52万千瓦，太阳能发电项目控股装机容量121.47万千瓦。</td>
</tr>
<tr>
<td>青海黄河上游水电开发有限责任公司</td>
<td>青海黄河上游水电开发有限责任公司系国家电投集团下属清洁能源发电企业。目前，在青海、甘肃、宁夏、陕西等地开发光伏电站项目和风电项目。截至2019年末，青海黄河上游水电开发有限责任公司风电控股装机容量625.98万千瓦。</td>
</tr>
<tr>
<td>三峡新能源</td>
<td>三峡新能源为三峡集团子公司，拥有风能、太阳能、水力、核能等业务。截至2019年末，风电并网装机容量612.16万千瓦。</td>
</tr>
<tr>
<td>中广核新能源</td>
<td>中广核新能源为中广核集团子公司。截至2019年末，中广核新能源风电控股装机容量121.47万千瓦，中广核新能源风电控股装机容量121.47万千瓦。</td>
</tr>
<tr>
<td>京能清洁能源</td>
<td>京能清洁能源为京能集团子公司，拥有风能、太阳能、水力、核能等业务。截至2019年末，京能清洁能源风电控股装机容量476.35万千瓦，中广核新能源风电控股装机容量121.47万千瓦。</td>
</tr>
<tr>
<td>华润电力</td>
<td>华润电力为华润集团子公司，拥有风能、太阳能、水力、核能等业务。截至2019年末，华润电力风电控股装机容量869.2万千瓦，中广核新能源风电控股装机容量121.47万千瓦。</td>
</tr>
<tr>
<td>新天绿能</td>
<td>新天绿能为新天绿能集团子公司。截至2019年末，新天绿能风电装机容量为422万千瓦。</td>
</tr>
<tr>
<td>江苏新能</td>
<td>江苏新能为江苏新能集团子公司。截至2019年末，江苏新能风电装机容量为106万千瓦，中广核新能源风电装机容量121.47万千瓦。</td>
</tr>
<tr>
<td>嘉泽新能</td>
<td>嘉泽新能为江苏新能集团子公司。截至2019年末，嘉泽新能风电装机容量为110万千瓦，中广核新能源风电装机容量121.47万千瓦。</td>
</tr>
</tbody>
</table>

资料来源：相关公司公告，信达证券研发中心
风电运营企业的风力发电成本由建设成本和运营成本构成，建设成本占比较大在60-80%之间。以嘉泽新能和浙江新能为例，嘉泽新能主营以风力发电业务为主，2020年折旧和摊销占营业收入成本的81.29%，运维成本占比15.46%，其他成本占比3.25%；浙江新能2020年折旧和摊销占成本比例为60.83%，运维费占比23.15%，委托运维成本占比8.92%，其他成本占比7.11%。

图2：风力发电成本结构

资料来源：信达证券研发中心

图3：2020年嘉泽新能风力发电成本构成

资料来源：嘉泽新能公告，信达证券研发中心

图4：2020年浙江新能风力发电成本构成

资料来源：浙江新能公告，信达证券研发中心

度电成本则还要考虑每年的发电量，发电量与地区风能资源丰富程度、稳定性和风电机组先进程度等紧密相关，根据风资源的不同我国对陆上风电也划分出四个不同等级的资源区，匹配不同的度电成本和价格，同时不同功率的风电机组年发电量也不同，而对应单位发电量的设备折旧也存在差异。

图5：风力发电度电成本结构

资料来源：信达证券研发中心
随着风电机组建设成本的持续下降，我国风力发电成本已降至较低水平，目前在对应上网电价0.45-0.50元/度的资源区，风力发电的度电成本约0.2元，考虑期间费用、资产减值以及所得税等因素的完全成本约0.30-0.35元/度。三峡新能源主营风电、水电和光伏发电，其中2020年风电平均上网电价为0.48元/度,毛利率达到60.15%,对应度电成本约0.19元/度,净利率约34.83%，对应度电的完全成本为0.31元；节能风电主营风力发电，2020年平均上网电价为0.46元/度,毛利率为52.09%,对应度电成本为0.22元,净利率为24.94%,对应度电的完全成本为0.35元。

与其他发电方式相比，我国风力发电成本已基本实现水电发电侧平价。参考国内风力发电主要企业国电电力和大唐发电经营数据，2020年国电电力风电发电总量达到133亿千瓦时，仅为考虑设备折旧情况下度电成本0.17元/度，按照设备折旧成本占比80%进行还原处理后的度电成本为0.21元；2020年大唐发电的风电发电总量为74亿千瓦时，风电营业成本16.7亿元,度电成本测算结果为0.23元。国电电力和大唐发电主营业务包括火电、风电、水电和光伏发电，2020年国电电力（成本项仅考虑折旧，火电考虑折旧和燃料）光伏发电成本最高为0.37元/度,水电成本最低为0.05元/度,火电和风电成本接近分别为0.27元/度、0.23元/度；2020年大唐发电光伏发电成本最高为0.32元/度,水电成本最低为0.10元/度,火电和风电成本接近分别为0.27元/度、0.23元/度。

表 4：三峡新能源和节能风电的风电业务基本情况

<table>
<thead>
<tr>
<th></th>
<th>三峡新能源</th>
<th></th>
<th>节能风电</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>平均上网电价（元/度）</td>
<td>0.45</td>
<td>0.44</td>
<td>0.46</td>
<td>0.48</td>
</tr>
<tr>
<td>毛利率</td>
<td>54.91%</td>
<td>57.99%</td>
<td>57.89%</td>
<td>60.15%</td>
</tr>
<tr>
<td>净利率</td>
<td>37.74%</td>
<td>38.31%</td>
<td>34.06%</td>
<td>34.83%</td>
</tr>
<tr>
<td>度电成本（元/度）</td>
<td>0.20</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
</tr>
<tr>
<td>度电完全成本（元/度）</td>
<td>0.28</td>
<td>0.27</td>
<td>0.30</td>
<td>0.31</td>
</tr>
</tbody>
</table>

图 6: 2020年国电电力和大唐发电各类发电方式度电成本比较（元/度）

表 5：2020年国电电力和大唐发电主营业务经营数据

<table>
<thead>
<tr>
<th></th>
<th>国电电力</th>
<th>大唐发电</th>
<th></th>
<th>国电电力</th>
<th>大唐发电</th>
</tr>
</thead>
<tbody>
<tr>
<td>项目</td>
<td>发电量（亿千瓦时）</td>
<td>发电量（亿千瓦时）</td>
<td>发电成本（亿元）</td>
<td>发电成本（亿元）</td>
<td></td>
</tr>
<tr>
<td>火电</td>
<td>3035.02</td>
<td>2283.99</td>
<td>0.19</td>
<td>611.98</td>
<td>0.27</td>
</tr>
<tr>
<td>风电</td>
<td>132.94</td>
<td>74.07</td>
<td>0.17</td>
<td>16.69</td>
<td>0.23</td>
</tr>
<tr>
<td>水电</td>
<td>602.47</td>
<td>359.09</td>
<td>0.05</td>
<td>34.62</td>
<td>0.10</td>
</tr>
<tr>
<td>光伏</td>
<td>3.19</td>
<td>9.15</td>
<td>0.37</td>
<td>2.95</td>
<td>0.32</td>
</tr>
</tbody>
</table>

资料来源：相关公司公告，信达证券研发中心
全球范围风电度电成本呈下降趋势，陆上风电降本最为显著，直接对比来看陆风和海风目前成本差距还较大，未来均有较大降本空间。目前陆风成本与火电成本已接近，火电技术较为成熟，后续度电成本下降空间不大。水电初始投资大且对于选址要求较高，不具备大面积推广条件，度电成本下降空间有限。

表6：全球主要发电方式对比

<table>
<thead>
<tr>
<th>发电方式</th>
<th>平均度电成本/兆瓦时</th>
<th>环保因素</th>
<th>优势</th>
<th>劣势</th>
</tr>
</thead>
<tbody>
<tr>
<td>火电</td>
<td>燃煤发电 232-449 元</td>
<td>存在一定烟气、粉尘污染</td>
<td>选址灵活、出力稳定、技术成熟，但燃料不可再生</td>
<td></td>
</tr>
<tr>
<td></td>
<td>煤电（约 33-65 美元）</td>
<td>对环境冲击小，同时可控制洪水泛滥、提供灌溉用水；同时有可能引起流域水文上的改变</td>
<td>具备可再生、发电成本低、机组启动快、调节容易的优点，同时工程投资大，建设周期长，选址对地理环境要求高</td>
<td></td>
</tr>
<tr>
<td>水电</td>
<td>47美元/兆瓦时</td>
<td>清洁能源、环境友好</td>
<td>具备可再生、基建周期短、装机规模灵活等优点，同时也有发电情况不稳定等缺点</td>
<td></td>
</tr>
<tr>
<td>风电</td>
<td>陆上 53美元/兆瓦时</td>
<td>清洁能源、环境友好</td>
<td>结构简单易安装维护，同时能量密度低、发电有间歇性、不稳定性等缺点</td>
<td></td>
</tr>
<tr>
<td>太阳能</td>
<td>光伏 68美元/兆瓦时</td>
<td>清洁能源、环境友好</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

资料来源：电气风电招股书，信达证券研发中心

风力发电建设成本中设备购置占比最高

风电建设成本中设备购置占比最高，陆风超过 70%，海风超过 50%。风电建设成本包括设备购置、安装工程、建筑工程、土地使用权、建设期贷款利息等。根据 2010-2016 年期间投产并采用 1.5 个 2.0MW 主流机型共 150 个陆上风电项目数据显示，陆上风电建设成本中设备购置占比达到 71.1%，其次是建筑工程占比为 12.60%，安装工程占比 6.2%，土地使用权占比 2.6%。海上风电建设成本组成中风电机组占比达到 45%-50%，基础和安装工程占比分别达到 20%和 7%，输变电成本占比 18%，其他占比低于 10%。风电建设的规模效应比较明显，建设成本和装机规模成反比。

图7：2010-2016年150个陆上风电项目建设成本平均构成

图8：海上风电建设成本构成

以上数据与电网能源研究院的统计基本一致，无论是陆上还是海上风电项目，风电机组成本依然在初始投资成本中占据绝对比例，陆上风电项目的风机成本远高于海上风电项目风机成本约 34%左右，但接网成本、建设成本与其他投资均小于海上风电项目。

海上风电陆地条件和海上条件的截然不同，海上风力发电远比陆地风力发电复杂，在设计和建设海上风场过程中，既要考虑海上恶劣自然条件和海洋条件，如盐雾腐蚀、海浪载荷、海冰冲撞、台风破坏等影响，也需要考虑海域功能和海上风电机械性能。这些差异可能会造成陆地风力发电和海上风力发电的经济成本以及其影响因素的不同。另外，虽然海上风能比陆地风能大，但是由于海上风电远离海岸，风电机组在恶劣的海洋环境影响下，螺栓等易损
件失效加快，机械和电气系统故障率大幅上升，导致检修维护的频次加快，同时运行与维护需要特殊的设备和运输工具，导致风机本身成本和维护支出大大增加。

| 表7：陆上风电和海上风电建设成本构成对比（%） |
|-----------------|-----------------|-----------------|-----------------|
| 风电机组 | 接网成本 | 建设成本 | 其他投资 |
| 陆上风电 | 64-84 | 9-14 | 4-10 | 4-10 |
| 海上风电 | 30-50 | 15-30 | 15-25 | 8-30 |

资料来源：国网能源研究院，信达证券研发中心

风电整机成本构成中以叶片、齿轮箱和发电机为主

风电整机成本构成中以叶片、齿轮箱、发电机、钢件、变流器、铸件、偏航变桨轴承等为风电机组产品的主要原材料，其中占比较大的单个部件是叶片、齿轮箱和发电机。2020年风电产业投资成本构成中叶片占比22%，齿轮箱占比12%，发电机占比8%。三者合计占比达42%。2020年三一重能成本构成中叶片占比16%，发电机占比5%，叶片及主材占比16%，三者合计占比达到41%，与风电成本的结构接近。

风电降本路径明确，大型化趋势持续加快

风电行业风机单机容量大型化的趋势明确，单机大功率可以提高发电量，摊薄设备和非设备成本，同时降低风速要求，提高发电小时数，大兆瓦、高可靠性、高经济效益的风电项目占比逐步提升。风电技术进步是单机容量大型化的基础，单机容量大型化将有效提高风能资源利用效率、提升风电项目投资开发运营的整体经济效益、提高土地/海域利用效率、降低度电成本、提高投资回报、利于大规模项目开发。

在全球市场范围内，陆上风电领域随着平价大基地项目、分散式风电项目的需求增加，对机组的风资源利用效率要求提高，陆上风机功率已经逐步迈入4MW、5MW时代。海上风电领域，由于相较陆上风电面临更为复杂的环境，且未来势必面向远海、深海持续开拓，对产品本身和成本管控能力将不断提出新要求，大兆瓦机型推出的趋势更为突出。

以欧洲风电市场为例，根据欧洲风能协会的《Offshore Wind in Europe Key trends and statistics 2020》报告统计，2020年欧洲安装的海上风机机组平均额定功率已达到8.2MW，而国内海上风机机组平均容量还不到5MW。目前，西门子歌美飒、维斯塔斯和GE已经分别推出14MW、15MW、14MW级别的海上机组和6.6MW、6MW和6MW的陆上机组，各国际领先厂商的投入力度明显增加，发展趋势明显。
图 11：风机大型化经济效益提升路径

【资料来源：信达证券研发中心】

2017-2019 年国内陆风和海风装机大型化趋势明显，据中国风电产业地图数据显示，
2017-2019 年陆上 3MW 及以下机型新增装机复合增速仅 3.89%，3-4MW 机型复合增速达到 182.42%，4MW 以上机型复合增速达 150.65%；国内海风发展迅速，2017-2019 年海上
4MW 及以下机型新增装机复合增速为 37.22%，4-6MW 机型复合增速 35.78%，2017 年国内
6MW 以上的海风装机为 0，到 2019 年新增装机达到 0.34GW，较上年增长 385%。

表 8：2017-2019 年陆上与海上不同功率风机新增装机容量变化

<table>
<thead>
<tr>
<th>陆上装机（万 KW）</th>
<th>2017年</th>
<th>2018年</th>
<th>2019年</th>
<th>CAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>3MW 及以下机型</td>
<td>1778</td>
<td>1735.3</td>
<td>1919.2</td>
<td>3.89%</td>
</tr>
<tr>
<td>3-4MW 机型</td>
<td>54.9</td>
<td>115.3</td>
<td>437.9</td>
<td>182.42%</td>
</tr>
<tr>
<td>4MW 以上机型</td>
<td>8.5</td>
<td>7.1</td>
<td>53.4</td>
<td>150.65%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>海上装机（万 KW）</th>
<th>2017年</th>
<th>2018年</th>
<th>2019年</th>
<th>CAGR</th>
</tr>
</thead>
<tbody>
<tr>
<td>4MW 及以下机型</td>
<td>25.6</td>
<td>43.6</td>
<td>48.2</td>
<td>37.22%</td>
</tr>
<tr>
<td>4-6MW 机型</td>
<td>90.8</td>
<td>114.94</td>
<td>167.4</td>
<td>35.78%</td>
</tr>
<tr>
<td>6MW 以上机型</td>
<td>0</td>
<td>6.97</td>
<td>33.8</td>
<td>384.94%</td>
</tr>
</tbody>
</table>

【资料来源：中国风电产业地图，信达证券研发中心】

风机大型化趋势在今年明显加快，平价后降本较为迫切，风电装机需求也将在降本驱动下迎
来持续扩容。2021 年上半年金风科技风机销售 2966MW，其中 2S 平台机组的销售容量达
到 1017MW，占比 34.3%，3/4S 平台机组销售容量明显增加至 1152MW，同比增长 316.8%，
增速进一步提升，占比达到 38.8%，同比大幅提升 32.1 个百分点，6/8S 平台机组实现销售
容量 795MW，同比增长 379.4%，占比 26.8%，同比上升 22.8 个百分点，1.5MW 机组销售
容量 1.65MW，占比降至 0.1%。从中期的在手订单来看，3/4S 机组占比已经超过 50%，
截至上半年末，金风科技外部在手订单中，3/4S 平台机型订单容量超过 8.6GW，占比从去
年底的 39%提升至 58%，成为占比最大的平台产品；2S 占比降至 36%，6/8S 占比 6%。
2021 年上半年明阳智能风机销售 2342MW，同比增加 15.74%；陆上出货量 1193MW，同比下降 29%；海上出货量 1149MW，同比增加 237%，海风机型出货量占比达到 49.07%，较去年同期增加 32 个百分点。上半年 5.XMW 及以上机型（海风）占比达到 49%；陆上风电大型化趋势更为明显，2020 年 3-5MW 机型出货量达到 4347MW，占比大幅提升，而低于 3MW 的机型出货量降至 406MW，今年上半年 3-5MW 机型出货量达到 1141，占比进一步提升。

陆上和海上风电机组招标价格均呈现快速下降态势

风机大型化带来的经济效益是来自成本和效率的平衡，幸运的是，风机供应链加快成熟，技术创新迭代，风机机组单位功率对应的平均售价持续下行，除设备以外的非设备的单位成本随单机功率的提升也将不断降低，同时大功率机组降低最低风速要求，全年的发电可利用小时数也将增加，因此在大功率趋势下，除设备以外的度电成本影响因素与功率大小必然呈反向关系，只要风机单价下降则可断定度电成本也会下降。

去年至今风电机组投标均价持续下降，从去年中旬的 3500 元/kW 左右下降至今年中旬的 2400-2600 元/kW，今年 6 月 3S 级别机组的全市场整机商参与的投标均价为 2616 元/千瓦，4S 级别机组的全市场整机商参与的投标均价为 2473 元/千瓦，大功率成本优势逐渐显现，3S 和 4S 机组成本差距有所拉大。

2021 年三季度包括大唐集团、国家能源集团、华能集团、华润电力、中广核新能源、中国电建、中国能建、中核集团在内的 8 家风电开发商共公布了 78 个风电项目风机中标情况，累计开标规模为 6763.55MW。风机单机规模招标要求均保持在 3.0MW 及以上，风机（不含塔筒）中标价格均价在 2566 元/kW；风机（含塔筒）中标报价为 3166 元/kW。
海上风电向平价快速迈进，风机机组招标均价过去一年的降幅超过 30%。近期中广核象山涂茨海上风电场项目和华润电力苍南 1#海上风电项目风机（含塔架）采购项目分别开标。中广核象山涂茨海上风电场项目中，共包括中国海装、运达风电、电气风电、明阳智能在内的 6 家整机商参与竞标。6 家整机商中，最低报价由中国海装报出，折合单价为 3830 元/kW；平均报价为 4443 元/kW；最高报价由明阳智能报出，折合单价为 4900 元/kW。

华润电力苍南 1#海上风电项目风机（含塔架）采购项目中，共包括中国海装、东方风电、明阳智能、远景能源、电气风电在内的 5 家整机商参与竞标。5 家整机商中，最低报价由中国海装报出，折合单价为 4061 元/kW；平均报价为 4562 元/kW；最高报价由电气风电报出，折合单价为 5020 元/kW。2020 年华润苍南 1#项目曾开标，当时中标价为 290570 万元，折合单价为 7264 元/kW，此次报价降幅高达 30.89%-44.09%。2020 年共有 27 个海上风电机组采购项目对外进行开标价格公示，采购平均单价为 6998 元/kW，今年下降明显。

风力发电度电成本有望延续下降趋势
受益于技术进步、供应链成熟、开发经验积累以及规模化发展等因素，风力发电成本在过去 10 年呈现明显的下降趋势。风轮直径增大、轮毂高度提升和机组大型化是风电机组技术发展最主要的几个趋势。在风速相同的地方，更大风轮直径的机组能捕获更多风能。在相同位置上，轮毂高度的提升也能够使机组获得更高的风速。假设发电量随风速的 3 次函数增加，则可以提高容量系数。与此同时，单机容量的增加能推动更大规模项目的建设，并有利于降低风电场的总安装成本。2010-2020 年全球陆上风电度电成本下降明显，由 2010 年的 0.089 元/千瓦时下降至 2020 年的 0.039 元/千瓦时，降幅达到 56%。
全球来看，设备大型化趋势明显，带动总建设成本大幅降低。2010-2020 年风机额定功率和
转子直径变化明显，分国别来看巴西、加拿大、瑞典变化最为显著，平均变化幅度在 50% 以
以上。风机大型化驱动降本，1983-2019 年，全球陆上风电项目的加权平均总安装成本下降了 72%，从 5179 美元/千瓦降到 1473 美元/千瓦。不同国家之间甚至同一国家内部，由于物流限制、土地使用政策、劳动力成本等不同，项目安装费用差别也较大。与新兴市场相比，竞争激烈的成熟市场的项目总安装成本在较长时期内降幅更大。2019 年加权平均安装成本按降序排列为亚洲地区（不含中国和印度）、中东和非洲地区、欧洲、中美洲和加勒比地区、
南美洲（巴西除外）和大洋洲。与邻国相比，巴西、印度和中国拥有更成熟的市场和更低的
成本结构。其中，印度和中国的加权平均总安装成本最有竞争力，分别为 1055 美元/千瓦和
1223 美元/千瓦。
随技术逐渐成熟，海上风电发展较快。与陆上风电项目相比，海上风电的建设、运维必须在恶劣的海洋环境中进行，这意味着高昂的成本，并且交货时间也大大延长。海上风电场的规划、开发复杂，建设更是如此，由此增加了总安装成本。考虑到离岸距离的因素，海上风电项目也存在更高的电网连接和建设成本。全球海上风电项目的安装成本在2012年至2013年间达到过一个峰值，因为当年的项目离岸距离更远，水域更深，而且各大企业一直在尝试更先进的技术。2010-2019年，全球海上风电加权平均平准化电成本下降了48%，从0.161美元/千瓦时降到0.084美元/千瓦时。

分国别来看，2010-2020年海上风电电度成本降幅最高的是比利时，降幅达到5.6.06%，其次是中国，降幅达到52.81%。我们认为随着海上风电产业链更加成熟，大型化驱动下海上风电的电度成本还有较大下行空间，我们预计未来3-5年海风有望实现平价，装机需求有望保持高速增长。
表 10：2010 年与 2020 年按区域划分的国家/地区海上风电加权平均平准化度电成本

<table>
<thead>
<tr>
<th></th>
<th>2010 美元/度</th>
<th>第 5 百分位度电成本 (LCOE)</th>
<th>2020 美元/度</th>
<th>第 95 百分位度电成本 (LCOE)</th>
<th>降幅</th>
</tr>
</thead>
<tbody>
<tr>
<td>一、亚洲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>中国</td>
<td>0.123</td>
<td>0.213</td>
<td>0.08</td>
<td>0.085</td>
<td>-53.04%</td>
</tr>
<tr>
<td>日本</td>
<td>0.215</td>
<td>0.215</td>
<td>0.2</td>
<td>0.2</td>
<td>-6.98%</td>
</tr>
<tr>
<td>韩国</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.122</td>
<td>0.122</td>
<td></td>
</tr>
<tr>
<td>二、欧洲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>比利时</td>
<td>0.198</td>
<td>0.198</td>
<td>0.085</td>
<td>0.087</td>
<td>-56.06%</td>
</tr>
<tr>
<td>丹麦</td>
<td>0.11</td>
<td>0.11</td>
<td>0.088</td>
<td>0.088</td>
<td>-20.00%</td>
</tr>
<tr>
<td>德国</td>
<td>0.164</td>
<td>0.171</td>
<td>0.093</td>
<td>0.095</td>
<td>-43.98%</td>
</tr>
<tr>
<td>荷兰</td>
<td>n.a.</td>
<td>n.a.</td>
<td>0.066</td>
<td>0.067</td>
<td></td>
</tr>
<tr>
<td>英国</td>
<td>0.151</td>
<td>0.162</td>
<td>0.115</td>
<td>0.115</td>
<td>-29.01%</td>
</tr>
</tbody>
</table>

数据来源：IRENA，信达证券研发中心

本周动态及点评

① 工程机械

（1）国家统计局表示，供给侧结构性改革稳步推进，创新发展势头良好，为经济发展注入了强大动力。产业数字化智能化发展提速。前三季度，高技术制造业增加值同比增长 20.1%；集成电路、工业机器人产量大幅增长。其中，新能源汽车产业逆势而上，产量同比增长 172.5%。（信息来源：工程机械在线）

（2）10 月 18 日，国新办举行新闻发布会，介绍 2021 年前三季度国民经济运行情况。初步核算，前三季度国内生产总值 823131 亿元，按可比价格计算，同比增长 9.8%，两年平均增长 5.2%。前三季度国民经济总体保持恢复态势，结构调整稳步推进，推动高质量发展取得新进展。但也要看到，当前国际环境不确定性因素增多，国内经济恢复仍不稳固、不均衡。（信息来源：中国工程机械工业协会）

（3）10 月 20 日，在国新办举行的“前三季度央企经济运行情况”新闻发布会上，国务院国有资产监督管理委员会秘书长、新闻发言人彭华岗表示，前三季度，中央企业利润持续快速增长，累计实现净利润 15129.6 亿元，同比增长 65.6%，比 2019 年同期增长 43.2%，两年平均增长 19.7%。（信息来源：中国工业新闻网）

② 油服

（1）10 月 20 日，中国海洋石油集团有限公司对外宣布，我国最长煤层气长输管道——神木-安平煤层气管道工程（简称神安管道）顶管穿越南水北调中线干渠施工作业正式竣工，标志着这一国家重点管道工程已实现阶段性竣工。（信息来源：石油 Link）

（2）10 月 21 日，国际油价自多年高位回落，因为一些投资者对最近的涨势进行获利了结。不过美国的稳健需求，以及市场在煤炭和天然气价格飙升情况下转向燃油发电，限制了油价跌势。（信息来源：国际石油网）

（3）本周期（10 月 11 日以来），全球能源供应紧张担忧不减，石油供应增长动力不足，国际油价进一步走高，布伦特原油期货价格突破 85 美元 / 桶。预计 10 月 22 日 24 时起，国内成品油价格每吨将上调 310 元左右，折合 92#汽油、0#柴油每升分别上调约 0.24 元、0.26 元。（信息来源：国际石油网）

③ 光伏

（1）10 月 21 日，国家能源局发布 1-9 月份全国电力工业统计数据。截至 9 月底，全国发电装机容量 22.9 亿千瓦，同比增长 9.4%。其中，风电装机容量约 3.0 亿千瓦，同比增长 32.8%。太阳能发电装机容量约 2.8 亿千瓦，同比增长 24.6%。（信息来源：光伏网）
（2）10月22日，国家能源局公布了9月份户用光伏项目信息，数据显示，2021年9月新纳入国家财政补贴规模户用光伏项目总计装机容量为214.23万千瓦。截至2021年9月底，全国累计纳入2021年国家财政补贴规模户用光伏项目装机容量为1167.59万千瓦。（信息来源：光伏們）

（3）近日，隆基的商业尺寸HJT(M6硅基异质结)太阳能电池经ISFH(德国哈梅林太阳能研究所)测试，转换效率达25.82%，再次打破世界纪录。就在今年6月，隆基曾以25.26%的转换效率创造了该电池技术的新世界纪录，短短四个月后，这一数据被隆基再次刷新。研发HJT技术是隆基践行以技术创新引领全球能源转型的重要实践，半年内连续两次突破HJT电池效率世界纪录，标志着隆基实现新型太阳能高效电池技术的全面领先，为全球光伏产业持续快速发展带来强大动能。（信息来源：光伏們）

◎锂电设备

（1）越南Vingroup宣布将在河静省为旗下品牌VinFast电动车建立一座年产5GWh的动力电池工厂，项目投资额达3.87亿美元（约合人民币24.7亿元）。VinFast在2021年发布了三大全新智能电动SUV车型，并计划在12月之前开始交付其在越南海防此次建设年产5GWh电池工厂，主要目的是为其电动汽车生产销售提供本土化电动供应。厂生产的电动汽车。（信息来源：高工锂电）

（2）近日，宁德时代与四川能投签署战略合作协议。依托四川能投在锂矿资源、锂盐生产等资源优势，深化双方在新能源产业领域多层次、多形式的合作。四川能投正在通过控股子公司川能动力加速推进锂电产业链发展。（信息来源：高工锂电）

（3）下游市场需求激增叠加产品价格上涨，三元前驱体市场竞争进入新阶段。下游市场需求将呈现爆发式增长，头部正极材料企业出于保障原料供应稳定和降低采购成本的需求，卡位优质三元前驱体供应资源，并对前驱体企业在产能规格和供货能力方面提出更高的要求。（信息来源：高工锂电）

◎其他

（1）10月18日，青岛首个光电显示产业园--中南高科·芯海林·青岛光电产业园项目，在青岛西海岸新区培土奠基，将进一步推动新区及青岛光电显示产业发展。项目正式运营后，预计年产值约20亿元，带动相关就业人口3000人以上。（信息来源：激光行业观察）

（2）10月21日，金运激光发布2021年前三季度报告，公司2021年1-9月实现营业收入2.67亿元，同比增长107.09%，归属于上市公司股东的净利润为亏损1878.44万元，亏损同比扩大812.49%，每股收益为-0.1242元。（信息来源：激光行业观察）

（3）10月21日，泰尔股份公告，为拓展激光业务，公司拟以自有资金出资1000万元，在上海市松江区设立泰尔（上海）激光科技有限公司（最终以工商登记机关核准的名称为准。）

本周重点上市公司动态

（1）捷佳伟创（300724.SZ）10月22日发布关于向特定对象发行股票解除限售上市流通的提示性公告，解除限售股份数量为26,480,245股，占公司目前总股本的7.62%。

（2）杭可科技（688006.SH）10月21日公告，拟投资133,713.02万元，在浙江省杭州市萧山区机场北辅路以南、东复线以东、机场路以北地块新建10万平方米智能化生产车间及4.5万平方米辅助楼，用于扩大生产规模。

（3）杭叉集团（603298.SH）10月20日公告，发布三季报，三季度实现营收36.37亿元，同增17.90%，实现归母净利润2.34亿元，同比增长8.09%。

（4）奥特维（688516.SH）10月20日公告，控股子公司无锡松瓷机电取得宇泽半导体（云南）有限公司“1600单晶炉采购”项目的中标通知书，中标金额约1.4亿元（具体金额以正式签订的合同为准）。
研究团队简介

罗政，复旦大学金融学硕士，曾任新华社上海分社记者、中信建投证券研究发展中小市值组研究员、国盛证券机械设备行业机械组负责人，2020年3月加入信达证券，负责机械设备行业研究工作。

刘卓，对外经济贸易大学金融学硕士，2017年加入信达证券研发中心，曾任农林牧渔行业研究员，现从事机械设备行业研究。

刘崇武，中国科学院大学材料工程硕士，曾任财信证券研究发展中心机械设备行业研究员，2020年6月加入信达证券，从事机械设备行业研究。

机构销售联系人

<table>
<thead>
<tr>
<th>区域</th>
<th>姓名</th>
<th>手机</th>
<th>邮箱</th>
</tr>
</thead>
<tbody>
<tr>
<td>全国销售总监</td>
<td>韩秋月</td>
<td>13911026534</td>
<td>hanqiuyue@cindasc.com</td>
</tr>
<tr>
<td>华北区销售副总监(主持工作)</td>
<td>陈明真</td>
<td>15601850398</td>
<td>chenmingzhen@cindasc.com</td>
</tr>
<tr>
<td>华北区销售</td>
<td>阙嘉程</td>
<td>18506960410</td>
<td>quejiacheng@cindasc.com</td>
</tr>
<tr>
<td>华北区销售</td>
<td>刘晨旭</td>
<td>13816799047</td>
<td>liuchenxu@cindasc.com</td>
</tr>
<tr>
<td>华北区销售</td>
<td>祁丽诚</td>
<td>13051504933</td>
<td>qiliyuan@cindasc.com</td>
</tr>
<tr>
<td>华北区销售</td>
<td>陆禹舟</td>
<td>17687659919</td>
<td>luyuzhou@cindasc.com</td>
</tr>
<tr>
<td>华东区销售副总监(主持工作)</td>
<td>杨兴</td>
<td>13718803208</td>
<td>yangxing@cindasc.com</td>
</tr>
<tr>
<td>华东区销售</td>
<td>吴国</td>
<td>15800476582</td>
<td>wuguo@cindasc.com</td>
</tr>
<tr>
<td>华东区销售</td>
<td>张鹏程</td>
<td>15618358383</td>
<td>guopengcheng@cindasc.com</td>
</tr>
<tr>
<td>华东区销售</td>
<td>李若琳</td>
<td>13122616887</td>
<td>liruolin@cindasc.com</td>
</tr>
<tr>
<td>华东区销售</td>
<td>戴剑箫</td>
<td>13524484975</td>
<td>daijianxiao@cindasc.com</td>
</tr>
<tr>
<td>华南区销售总监</td>
<td>王留阳</td>
<td>13530830620</td>
<td>wangliuyang@cindasc.com</td>
</tr>
<tr>
<td>华南区销售</td>
<td>陈晨</td>
<td>15986679987</td>
<td>chenchen3@cindasc.com</td>
</tr>
<tr>
<td>华南区销售</td>
<td>王雨霏</td>
<td>17727821880</td>
<td>wangyufei@cindasc.com</td>
</tr>
<tr>
<td>华南区销售</td>
<td>王之明</td>
<td>15999555916</td>
<td>wangzhiming@cindasc.com</td>
</tr>
<tr>
<td>华南区销售</td>
<td>闫娜</td>
<td>13229465369</td>
<td>yanna@cindasc.com</td>
</tr>
</tbody>
</table>
分析师声明

负责本报告全部或部分内容的每一位分析师在此申明，本人具有证券投资咨询执业资格，并在中国证券业协会注册登记为证券分析师，以勤勉的职业态度、独立、客观地出具本报告；本报告所表述的所有观点准确反映了分析师本人的研究观点；本人薪酬的任何组成部分不曾与，不与，也将不会与本报告中的具体分析意见或观点直接或间接相关。

免责声明

信达证券股份有限公司（以下简称“信达证券”）具有中国证监会批复的证券投资咨询业务资格。本报告由信达证券制作并发布。

本报告是针对与信达证券签署服务协议的签约客户的专属研究产品，为该类客户进行投资决策时提供辅助和参考，双方对权利与义务均有严格约定。本报告仅提供给上述特定客户，并不面向公众发布。信达证券不会因接收人收到本报告而视其为本公司的当然客户。客户应当认识到有关本报告的电话、短信、邮件提示仅为研究观点的简要沟通，对本报告的参考使用须以本报告的完整版本为准。

本报告是基于信达证券认为可靠的已公开信息编制，但信达证券不保证所载信息的准确性和完整性。本报告所载的意见、评估及预测仅为本报告最初出具日的观点和判断，本报告所指的证券或投资标的的价格、价值及投资收入可能会出现不同程度的波动，涉及证券或投资标的的的历史表现不应作为日后表现的保证。在不同时期，或国使用不同假设和标准，采用不同观点和分析方法，致使信达证券发出与本报告所载意见、评估及预测不一致的研究报告，对此信达证券可不发出特别通知。

在任何情况下，本报告中的信息或所表述的意见并不构成对任何人的投资建议，也没有考虑到客户特殊的投资目标、财务状况或需求。客户应考虑本报告中的任何意见或建议是否符合其特定状况，若有必要应寻求专家意见。本报告所载的资料、工具、意见及推测仅供参考，作为或被视为出售或购买证券或其他投资标的的邀请或向人做出邀请。

在法律允许的情况下，信达证券或其他金融机构可能会持有报告中涉及的公司所发行的证券并进行交易，并可能会为这些公司正在提供或争取提供投资银行服务。

本报告版权仅为信达证券所有。未经信达证券书面同意，任何机构和个人不得以任何形式翻版、复制、发布、转发或引用本报告的任何部分。若信达证券以外的机构向其客户发放本报告，将由该机构独立为此发送行为负责，信达证券对此等行为不承担任何责任。本报告同时不构成信达证券向发送本报告的机构之客户提供的投资建议。

如未经信达证券授权，私自转载或者转发本报告，所引起的一切后果及法律责任由私自转载或转发者承担。信达证券将保留随时追究其法律责任的权利。

<table>
<thead>
<tr>
<th>投资建议的比较标准</th>
<th>股票投资评级</th>
<th>行业投资评级</th>
</tr>
</thead>
<tbody>
<tr>
<td>买入：股价相对强于基准 20%以上；</td>
<td>看好：行业指数超越基准；</td>
<td></td>
</tr>
<tr>
<td>增持：股价相对强于基准 5%～20%；</td>
<td>中性：行业指数与基准基本持平；</td>
<td></td>
</tr>
<tr>
<td>持有：股价相对基准波动在±5%之间；</td>
<td>看淡：行业指数弱于基准。</td>
<td></td>
</tr>
<tr>
<td>卖出：股价相对弱于基准 5%以下。</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

评级说明

风险提示

证券市场是一个风险无时不在的市场。投资者在进行证券交易时存在赢利的可能，也存在亏损的风险。建议投资者应当充分深入了解证券市场蕴含的各项风险并谨慎行事。

本报告中所述证券不一定能在所有的国家和地区向所有类型的投资者销售，投资者应当对本报告中的信息和意见进行独立评估，并应同时考量各自的投资目的、财务状况和投资需求，必要时就法律、商业、财务、税收等方面咨询专业顾问的意见。在任何情况下，信达证券不对任何人因使用本报告中的任何内容所引致的任何损失承担责任，投资者需自行承担风险。