中国平安 PING AN

专业·价值

证券研究报告

竞争格局优异, 价格底部回升

——玻纤行业深度报告

行业评级 建材行业 强于大市(维持)

证券分析师

郑南宏 投资咨询资格编号: \$1060521120001

杨侃 投资咨询资格编号: S1060514080002

2024年9月20日

请务必阅读正文后免责条款

专业 让生活更简单

要点总结

- 玻纤为增强、替代型材料,下游应用领域广。玻璃纤维是一种性能优异的无机非金属材料,通常用作增强型、替代型材料。从生产特点看,玻纤产业技术与资金门槛较高,一条年产12 万吨的粗纱产线需要约12 亿元固定资产投入,同时与玻璃类似、生产具有连续性特征,遵循8-10年的冷修周期。从下游需求看,玻纤应用领域广且持续拓宽,目前全球玻纤应用在基建和建筑材料、交通运输、电子电气、工业设备、能源环保,分别占35%、29%、14%、12%、10%。2012-2022年全球玻纤产量从530万吨增加至1041万吨,CAGR为7.0%,2022年我国玻纤产量占全球比重高达66%。从上游成本看,原材料、人工、折旧、能源占据较高比重,长海股份2023年玻纤及制品成本中材料、人工、折旧、能源、运输分别占45%、12%、10%、26%、3%。原材料中一类重要成分为叶腊石,而我国是叶腊石矿储量最丰富国家之一,资源集中在浙江/福建等,这也是巨石等巨头重要生产基地所在。
- 供需格局呈边际改善,玻纤价格底部回升。2014年以来粗纱价格经历了三轮周期,前两轮周期持续时间为3年左右,第三轮上升周期自2020Q3持续至2022Q1,下行周期自2022Q2至2024Q1,接近经历4年。2024M3后头部企业接连提价,玻纤价格从底部反弹25%左右。主要因行业亏损严重、龙头积极调整策略,叠加三四月旺季需求边际改善、尤其中下游在涨价带动下积极补库。随着四五月中下游补库结束,叠加七八月淡季需求弱,六月以来玻纤厂家库存止跌回升,库存压力逐渐加大。同时,二季度复价行业后产能建设有所加快(前八月在产产能增加34万吨),2024H2与2025年或仍有新增产能释放。因此,后续价格能否平稳或再次提涨,取决于旺季来临后终端需求如何。从上半年表现看,汽车/风电/出口/电子领域需求尚可,光伏等新市场仍在培育。后续关注终端需求与库存表现,预计大厂积极维稳下短期价格相对平稳,其中电子纱格局优于粗纱,价格或更具韧性。
- 行业集中度高, 龙头成本、技术等优势突出。全球七家头部玻纤企业产能占全球产能七成, 国内三家头部企业(巨石、泰山、国际复材)产能占国内产能超六成。中国巨石全球市占率达23%(2020年), 玻纤纱年产能260万吨。过去十年巨石平均净利率较其他上市公司高7-13pct, 主要得益于成本控制(背后是规模化、区域布局、控股原料商、设备先进等优势), 以及中高端产品占比高(背后是客户资源、技术与产品实力)。此外公司实现全球化布局、海外收入占比近40%。中材科技与巨石同为中国建材股份所控股, 旗下泰山玻纤年产能达140万吨; 同时泰山玻纤产品以中高端为主, 新能源、交运、电子等领域占比高, 尤其风电业务具备优势。主要因中材科技同时发力玻纤、叶片与锂膜业务, 旗下中材叶片是风电叶片行业领军者, 全球市占率达26%。国际复材占全球产能10%, 位居全球前四。公司在风电叶片领域已成为全球最主要的风电纱及织物供应商之一, 市占率超25%, 在高端电子、热固领域亦处行业领先地位。2023年年底上市后募集资金18.6亿元用于项目建设等。长海股份为民企背景, 拥有从玻纤生产、制品加工到复合材料制造的完整产业链, 促使利润率处于行业前列。长海拟投资建设60万吨项目, 远高于现有产能29万吨, 潜在产能弹性大。
- 投資建议:玻纤行业过去两年景气度下行、价格大幅下滑,行业盈利亏损严重。随着头部企业积极调整策略,叠加供需格局有所改善,二季度以来玻纤价格明显回升,有望带动下半年企业业绩同比逐步改善。后续玻纤能否继续涨价取决于供需关系,但行业高集中度叠加头部企业稳价意愿强烈,玻纤尤其电子纱价格不宜悲观。建议关注具备成本、技术等优势,且产能持续扩张的头部企业如中国巨石、长海股份、中材科技、国际复材。
- 风险提示: 1)玻纤行业供需改善不及预期的风险; 2)原材料及能源价格上涨的风险; 3)国际贸易摩擦加大的风险。

- 一、玻纤为增强替代型材料,下游应用领域广
- 二、供需格局呈边际改善, 玻纤价格底部回升
- 三、行业集中度高, 龙头成本技术等优势突出
- 四、投资建议与风险提示

1.1 玻纤为性能优异的非金属材料,通常用作增强型、替代型材料

- ▶ 玻璃纤维是一种性能优异的无机非金属材料。玻璃纤维具有机械强度高、绝缘性好、耐腐蚀性好等特点,是以白泡石、叶蜡石、高岭土、石英砂、石灰石等天然无机非金属矿石为原料,按一定配方经高温熔制、拉丝、烘干及络纱等工艺制造而成,其单丝直径为几微米到二十几微米,每束纤维原丝都由数百根甚至上千根单丝组成。根据玻纤粗细,玻璃纤维分为粗纱和细纱,单丝直径9微米及以下的为细纱,单丝直径9微米以上的为粗纱。根据玻璃中碱含量的多少,可分为无碱玻璃纤维、中碱玻璃纤维和高碱玻璃纤维,其中无碱玻璃纤维占据全行业95%以上的产量规模(数据参考中国玻璃纤维公众号)。
- ▶ 玻纤及玻纤制品通常用作复合材料中的增强材料、电绝缘材料和绝热保温材料。玻纤增强复合材料具有优异的综合性能,能够替代钢、铝、木材、水泥、PVC等多种传统材料,在风电叶片、汽车与轨道交通、建筑材料、工业管罐、电力绝缘、电子电器、航空航天等领域广泛应用。玻璃纤维复合材料的主要成型工艺包括注塑、模压、拉挤、真空灌注、喷射、缠绕等、每类成型工艺的应用领域各不相同。

◆ 玻璃纤维图例

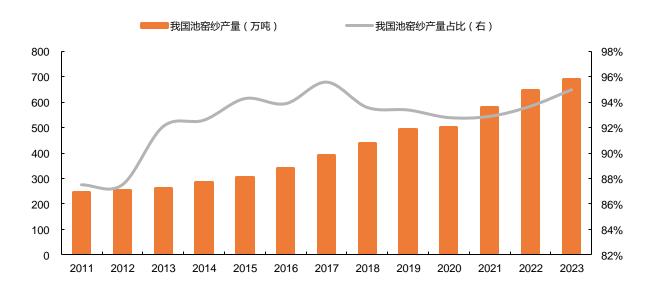
◆ 玻纤成型工艺及应用领域

主要应用领域

- 将玻璃纤维与热塑性树脂等有机物混合后,加热混炼,制成粒料,用注 保险杠、翼子板、前端模块、换挡支座 射成型设备在一定的压力和温度下注射入金属模具中,迅速冷却后,脱 总成等汽车零部件 模取出坯体,经脱脂后就可按常规工艺烧结
- 重卡保险杠、汽车水箱、新能源汽车电 ,模压将玻璃纤维与树脂、固化剂、填料、助剂先预制成片料、团料,经过熟池盒等零部件、建筑材料、卫浴、天花 校、电器箱体外壳、断路器、塑封电机 家电外壳等
- 将浸透树脂的连续无捻粗纱、毡、带或布等增强材料,在牵引力的作用环氧绝缘棒、光缆加强芯、高压绝缘子 3 拉挤 下,通过模具加热拉挤成型、固化,连续不断地生产长度不限的玻璃钢伞骨、钓鱼竿、门窗、地板梁、脚手架 型材
- 真空 兵空准任工乙足伯树庙通过兵空的刀里术准任的。北坡崎与维材杆干铺 . 真空 在模具上,树脂在抽完真空以后导入,树脂通过管子逐层渗透到铺层而 风电叶片等
- 5 喷射 利用设备将树脂雾化,并与及时切断的玻璃纤维在空间混合后,喷在模玻纤复合材料快艇、浴缸、汽车零部件 具表面上、排除气泡并压实。最终固化成型 双壁罐等

1.1 玻纤为性能优异的非金属材料,通常用作增强型、替代型材料

◆ 国际复材玻纤产品介绍及用途


•	产品细类	产品 名称	外形图	产品介绍	主要用途
	粗纱	直接纱		主要是由漏板直接拉制而成。根据浸润剂匹配的树脂不同,分为热固性直接纱和热塑性直接纱。热固性直接纱是指适用于热固性树脂,如不饱和聚酯树脂、乙烯基脂树脂等;热塑性直接纱是指适用于热塑性树脂,如PP、PA等树脂	
玻纤		合股纱	September 1	主要是由多束玻纤合股而成,分为硬质合股纱和软质合股纱	主要应用于喷射、SMC、缠绕、拉挤及预浸料工艺。 终端产品有智能卫浴、游艇、汽车内饰、超高压输 变电绝缘棒、运动器材等领域
		短切纱		短切玻璃纤维, 简称短切纱, 主要是由特制的浸润剂拉制原丝经由短切而成, 公司产品分为热塑短切纱、BMC 用短切纱和水拉丝	主要应用于汽车、电子电器、航空航天等领域
	细纱		10	根据不同的加工方式和纱线形态,产品分为初捻细纱、并捻细纱、膨体细纱及直接细纱。数百根玻璃纤维原纱经一次加捻,称为初捻纱,两根或多根初捻纱经过二次加捻合并形成并捻纱,多根初捻纱通过平行合股的方式可加工成合股细纱,初捻纱、并捻纱、合股细纱或者粗纱通过膨化的方式可加工成膨体纱,不经过捻线工艺的细纱,外观同直接纱形式的,称为直接细纱	主要应用于覆铜板、膜材料、网格布、银幕布、过滤材料、体育器材、窗纱等领域
玻纤制品	粗纱制品	多轴向织物		多轴向织物是一种新型的、先进的织物类型,其结构是由通过特殊的经编组织(例如编链或经平组织)将经向、纬向和斜向纱线缝编形成,织物中的铺层丝束能够保持无屈曲的平直状态	主要应用于生产风电叶片、航空航天、管道等领域
		方格布		连续玻璃纤维经过机织的方式织造而成的机织物。如果纱线是单股无捻粗纱,即直接纱,则此类机织物称为无捻粗纱布,俗称方格布	主要应用于 体育器材、医疗器械、汽车部件 等领域
		毡			主要应用于各种板材、采光板、船体、浴缸、冷却 塔、防腐材料、车辆、拉挤型材管道、贮罐、保温 隔热材料、汽车尾气过滤材料等领域
	细纱制品	细纱布		连续玻璃纤维经过机织的方式织造而成的机织物。如果纱线是细纱,则称为细纱布。 细纱布根据用途不同, 又分为电子布和工业布	主要应用于电子电器、航空器材、保温隔热等领域

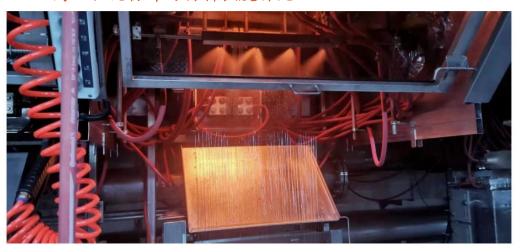
资料来源:国际复材招股书,平安证券研究所

1.2 生产以池窑拉丝法为主,低端产能逐渐面临淘汰

▶ 据国际复材招股书披露,玻璃纤维主要有池窑拉丝法和坩埚拉丝法两种生产工艺。坩埚拉丝法对生产设备和生产技术要求低,投资少,生产规模可以灵活调整,因此小型玻纤企业多采用此法。但是该方法须两次成型,程序复杂,生产过程能耗和污染较大,产品性能和质量较差,因此已基本被淘汰。池窑拉丝法根据要生产的玻纤产品化学组成,计算出原料配比,然后将原料细粉按照配比投入玻璃池窑,在高温下熔融成玻璃液,再通过高速运转拉丝机的牵引,涂覆浸润剂,将从池窑前炉通路的多孔漏板中流出的玻璃液制成玻璃纤维原丝,再经烘干、退解、络纱、短切、捻线、编织等工艺形成具有各种结构及性能的玻璃纤维及玻璃纤维制品。据中国玻璃纤维工业协会,2023年我国玻璃纤维纱产量达723万吨,其中池窑纱/坩埚拉丝产量分别为687/35万吨。

◆ 我国池窑纱占玻纤产量比重高

资料来源:中国玻璃纤维工业协会,平安证券研究所


1.3 玻纤技术与资金门槛较高, 生产具有连续性特征

- ▶ 玻纤行业具有资金投入多、技术壁垒高的特点。据国际复材招股书披露,玻纤企业需要掌握池窑设计、节能燃烧、玻璃配方、漏板设计与制造、表面处理、纤维成型等多项核心技术才能进行规模化生产;其次,投资一条年产12万吨的粗纱生产线需要约12亿元的固定资产投入,电子纱固定资产投入比粗纱更高。玻纤重资产主要体现在池窑、厂区建设、拉丝机以及铂铑合金等投入,尤其是铂铑合金,其由贵金属铂金和铑粉混合加工成为铂铑合金漏板,用于玻璃纤维的最后成丝工序。另外在技术储备方面,玻纤企业需要掌握池窑设计、节能燃烧、玻璃配方、漏板设计与制造、表面处理、纤维成型等多项核心技术才能进行规模化生产。
- ▶ 与玻璃行业类似,玻纤行业生产具有连续性特征,遵循8-10年的冷修周期。玻璃纤维原丝通过池窑拉丝而得,而池窑拉丝是一个连续生产过程,一般池窑点火开始生产后,在其使用寿命期限内(一般为8-10年)不能停窑,因此玻纤生产是连续性的,与玻璃类似,不具有明显的季节性特征。由于玻纤产品的应用领域较为广泛,玻纤销售季节性特征亦不明显。

◆ 铂铑价格走势图(单位 元/克)

◆ 玻纤拉丝用的多孔漏板多为铂铑合金制成,铂金可抗 高温、铑粉作为材料强度补充

资料来源: Wind, 中国玻璃纤维公众号, 平安证券研究所

1.4下游应用领域广(建材、交运、电子、风电等)且持续拓宽

- ▶ 玻璃纤维起源于20世纪30年代的美国,1938年OC成为世界上第一家玻璃纤维企业。二战期间,玻璃纤维主要用于航空工业方面,如飞机雷达罩、副油箱等;二战后逐步向火箭发动机外壳、船舶材料等领域延伸,并逐步在交通、建筑、风电、电子等民用领域被大量使用。
- ▶ 据中国巨石2023年年报,目前全球玻纤主要应用领域集中在基建和建筑材料、交通运输、电子电气、工业设备、能源环保,占比分别为35%、29%、14%、12%、10%。我国玻纤应用领域主要集中在建筑材料、交通运输、电子电气、能源环保、工业设备等领域,占比分别为34%、16%、21%、14%、15%。与全球玻璃纤维消费结构相比,我国玻璃纤维在交通运输领域的应用比例还有较大提升空间。其中有相对偏周期的应用领域(建筑建材、工业设备等),也有比较新兴的应用领域(汽车轻量化、5G、风电、光伏),所以玻纤行业兼具"周期"和"成长"双重属性。
- ◆ 玻璃纤维下游应用场景

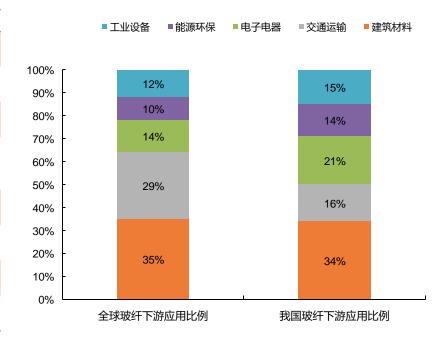
应用领域 应用说明

风电叶片 叶片是风力发电机中最基础和关键部件,对风力机组的发电效率、运行安全起着至关重要的作用。 玻璃纤维具有良好的强度和抗疲劳性能,可以提高叶片的抗风能力,增加叶片寿命,减轻叶片重量

汽车制造 在汽车的前端模块、发动机罩、装饰部件、新能源汽车电池保护盒、复合材料板簧中被广泛运用, 具有强度高、轻量化、模块化、低成本等特点

轨道交通 在高铁车头导流罩、蓄电池箱、车门、窗框、仪表框、玻璃纤维增强聚氨酯复合材料 (FFU) 枕木中被大量使用,具有耐磨、耐腐蚀、轻质高强的特点

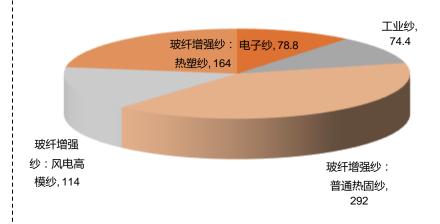
纤维直径在9 微米及以下的电子玻璃纤维是制作覆铜板(CCL)和印制电路板(PCB)的关键材料,电子通信 具有电绝缘性能好、防火阻燃、耐老化等特点;超细电子纤维及低介电玻璃纤维在5G、物联网领域广泛应用,具有高频、低延时、低损耗等特点

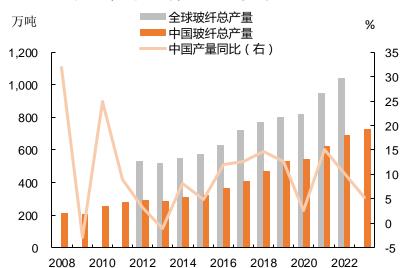

家用电器 促成類、空调等制冷机器中的轴流风扇和贯流风扇,高转速洗衣机的内桶、波轮、皮带轮以及电饭 煲底座和提手、电子微波烤炉制造中广泛使用,达到增加机械强度、提高耐热性的效果

工业管罐 用于制作运输石油、化工原料、天然气的工业管罐,具有耐腐蚀、耐高温、防爆的特点;用于城市管网非挖开修补,具有便捷、高效、低成本的优势

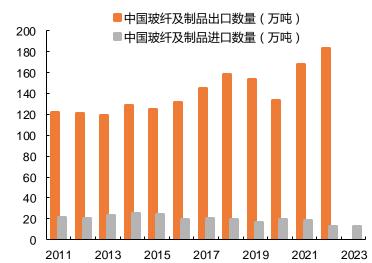
建筑材料 在建筑材料领域可作为各类轻质建筑、节能房屋、景观建筑、装饰材料、模块化建筑,以及智能卫建筑材料 浴、安全防护材料的结构体

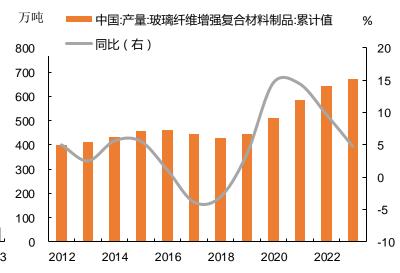
航空航天 高强玻璃纤维做成的直接纱、短切纱、经编织物等产品用于制造飞机蒙皮、行李架等部件; 低介电 玻纤用于火箭、导弹、卫星的电磁通讯窗口及雷达罩


玻璃纤维下游应用结构


1.5 全球玻纤产量持续增长,中国玻纤产量占全球比重约2/3

- ▶ 随着玻纤下游各行业市场容量提升,叠加玻纤应用范围不断扩展,2012-2022年全球玻纤产量从530万吨增加至1041万吨,CAGR为7.0%;其中,中国玻纤产量从288万吨增加至687万吨,CAGR为9.1%,2022年我国玻纤产量占全球比重高达66%,出口成为我国玻纤产业的重要需求环节。
- ▶ 2023年我国玻璃纤维纱产量723万吨,同比增5.2%。其中,玻璃纤维电子纱总产量为78.8万吨,同比下降约2.2%,玻璃纤维工业纱总产量为74.4万吨,同比增长7.9%,玻璃纤维增强纱总产量为570万吨,同比增长6.0%,其中普通热固纱、风电高模纱和热塑纱产量分别达到292万吨、114万吨和164万吨。


◆ 2023年中国玻纤纱产量类型(单位 万吨)

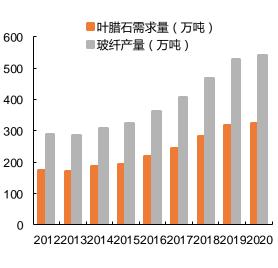

全球及中国玻纤产量走势图

◆ 中国玻纤及制品进出口情况

中国玻纤增强复合材料产量情况

资料来源:中国玻纤工业协会,平安证券研究所


1.6 成本主要为材料、能源与人工折旧,叶腊石资源集中在浙江/福建等


- ▶ 玻纤的生产成本主要包括原材料、能源、人工成本、固定资产折旧。其中,能源主要为电力和天然气;原材料包括矿物原料和化工原料,矿物原料主要为白泡石、叶蜡石、高岭土、硼钙石、石灰石、石英砂等,以叶蜡石、白泡石和高岭土用量最大;化工原料主要用于制备浸润剂,后者是由成膜剂、润滑剂、偶联剂、辅助成分等相关助剂多元复合配置而成的水基乳液或溶液,能够有效地将纤维单丝粘合成为原丝并在退绕过程中避免纱股间粘结,同时在纤维的各种制造阶段中保护纱股不受磨损。
- ▶ 从成本占比看,材料、人工、折旧、能源占据较高比重。据长海股份信评报告,2023年公司玻纤及制品的成本构成中,材料、人工、折旧、能源动力、运输费用分别占比45%、12%、10%、26%、3%。据中国巨石信评报告,2017年公司玻璃纤维纱及制品的主要成本构成中,玻璃原辅料、天然气、电力、人工成本及其他分别占比34%、9%、14%、38%。
- ▶ 叶腊石是玻纤生产的重要原材料,而我国是世界上叶腊石矿储量最丰富的国家之一。据微粉网公众号,截至2020年国内叶蜡石矿区数量达到78个,储量合计1123万吨;已探明储量仅次于日本和韩国,矿储资源主要集中于在浙江、福建等。
- 长海股份玻纤及制品成本构成

■其他 ■动力能源 ■运输费用 ■折旧 ■人工工资 ■材料 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 2022年 2023年

◆ 中材科技无碱玻璃纤维纱产品 ◆ 叶腊石资源主要集中在浙江、福建◆ 叶腊石需求量与玻纤产量对比原材料采购金额(单位 万元)

主要原材 料名称	2020年	2019年	2018年
叶腊石	-	5208	15232
叶腊石块	16575	13808	_
生石灰	11149	11690	9390
石英粉	9185	7973	6677
天然气	36308	35160	29223

资料来源:长海股份信评报告,中国巨石信评报告,中材科技公司公告,微粉网公众号,平安证券研究所

- 一、玻纤为增强替代型材料,下游应用领域广
- 二、供需格局呈边际改善, 玻纤价格底部回升
- 三、行业集中度高, 龙头成本技术等优势突出
- 四、投资建议与风险提示

2.1 玻纤价格经历三轮周期, 每轮3-4年左右

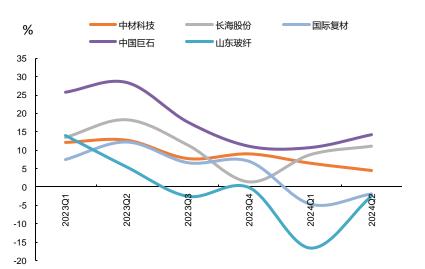
- ▶ 2014年以来,粗纱价格经历了三轮周期,前两轮周期持续时间为3年左右,第三轮上升周期自2020Q3持续至2022Q1,下 行周期自2022Q2持续至2024Q1,接近经历4年。
- ▶ 从驱动因素看,供需阶段性错配带来价格周期性波动。2014年玻纤价格上涨主要受益于2014-2015年风电装机高增、2014H2开始降准降息后地产建筑投资高增长;随着需求逐步走弱与玻纤产能投放、玻纤价格随后回落。2017年玻纤价格上涨或受益国家环保政策趋严、落后玻纤产能出清,同时需求端海外需求提升、玻纤在新能源汽车等领域应用渗透率提升等。2020年玻纤价格上涨受益于风电需求快速增长(2020年是风电退补最后一年)、新冠疫情导致海外玻纤供给不足等;随着2022年三四季度行业产能快速释放及海外需求下滑,玻纤价格快速走低。

◆ 粗纱价格呈现周期性波动

元/吨 7000 6500 6000 5500 5000 4500 4000 3500 3000 2016/03 2018/03 2022/03 2024/03 2012/03 2014/03 2020/03

◆ 电子纱价格周期性波动与粗纱类似

◆ 2014-2015、2020-2021年全球风电装机增长明显



资料来源:卓创资讯, Wind, 平安证券研究所

2.2 2024M3以来玻纤重新上涨, 受益龙头策略调整与供需边际改善

- ▶ 2024M3以来多家头部企业接连发布调价函,玻纤价格企稳反弹。据中国玻璃纤维公众号,2024年3月25日中国巨石、泰 山玻纤、山东玻纤等相继发布调价函、提出直接纱、合股纱等产品价格上调300-600元/吨。4月13日和5月17日、中国巨 石、长海股份等再度发布调价通知函,先后对玻纤细纱及短切毡产品价格进行恢复性调价。6月2日,中国巨石发布复价 函,对公司全系列风电用纱及短切原丝复价10%,以对冲能源、矿粉、化工原材料、劳动力等成本的上行。
- ▶ Q2玻纤涨价主要因行业亏损严重、龙头积极调整策略,叠加需求端边际改善、尤其中下游补库。2023年玻纤价格继续大 幅下滑,导致2023Q3以来山东玻纤、国际复材单季度净利率相继转负,而中小企业更是大多面临现金流亏损局面,行业 复价意愿强烈。第二,巨石等玻纤巨头策略也适时调整,积极推动行业复价、避免价格战。第三,玻纤行业供需格局也 边际改善,供给端2023年以来产能投放明显放缓,需求端2024Q2为传统旺季、终端需求边际修复,并且涨价政策驱动下 中下游企业积极补库、带动玻纤厂家库存回落、复价得以有效落地。

2023Q3以来山东玻纤与国际复材净利率陆续转负 ◆ 我国玻璃纤维增强塑料制品单月产量变化率 ◆ 2024年以来中国巨石库存周转天数回落

(单位 天)

2.3 六月以来库存止跌回升,关注下半年供需格局变化

- ▶ 随着四五月中下游补库结束,叠加七八月淡季需求弱,六月以来玻纤厂家库存止跌回升,库存压力逐渐加大。展望下半年,大厂积极维稳下玻纤价格或相对平稳,关注旺季来临后终端需求与库存表现。
- ▶ 从终端各类需求看,2024年地产建筑领域持续萎靡,汽车、电子、风电、出口领域表现尚可,光伏等新市场仍在培育中。面对持续增长的玻纤产能,后续终端需求能否匹配、实现供需平衡仍需观察。
- ▶ 风电方面,2024H1国内风电招标大幅增长,叠加下半年为传统装机旺季,风电装机有望保持两位数以上增长。据中国巨石2021年报披露,单位GW风电装机所需玻纤用量1万吨左右。2024年1-7月国内风电新增装机29.9GW,同增13.7%。上半年国内风电招标量达66.1GW,同增48%,为下半年需求释放奠定基础。中国电力企业联合会年初在《2023-2024年度全国电力供需形势分析预测报告》预测2024年我国风电新增装机预计约89GW,较2023年75.9GW增长17%。

国内玻纤净需求7月同比转负 ◆ 粗纱库存自2024年6月止跌回升 ◆ 2024年前七月风电装机保持良好增长 粗纱库存 (万吨) 国内净需求(万吨) 司比(%,右) 80 50000 70 45000 70 40000 60 35000 50 50 30000 40 25000 20000 30 30 15000 20 20 10000 10 5000

资料来源: Wind, 平安证券研究所

2021/09

2022/05

2021/01

2023/05

2023/08

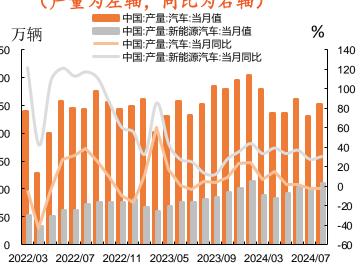
2023/11

2024/03

2024/06

2.4 汽车/风电/出口/电子领域需求尚可,光伏等新市场仍在培育中

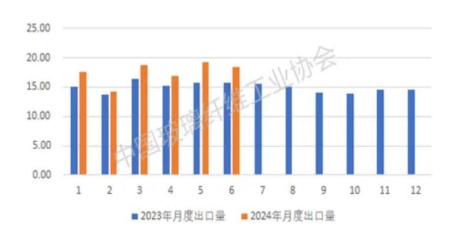
- > 交运方面,玻璃纤维主要应用在轨道交通装备、汽车制造和其他交通工具制造三大领域。
- 轨道交通领域,玻璃纤维既可以应用于应急疏散平台、电缆架、电缆槽、隔音屏障、走道格栅、护栏格栅等设施中,又可用于高铁列车的车头前端部、车门、座椅、墙板、转向架、司机台仪表框、车顶受电弓罩、蓄电池箱等结构件。在国家大力发展轨道交通的政策背景下,玻璃纤维在轨道交通领域的市场前景相对广阔。
- 燃油车节能减排与新能源车推广是汽车行业未来趋势,在确保整车安全前提下,在前端模块、发动机罩、新能源汽车电池保护盒、复合材料板簧、仪表板、底护板、车门板、翼子板、侧裙板等部位可较多使用玻纤增强复合材料,有效的降低整车质量,对燃油车油耗的降低以及新能源汽车续航里程的提升具有显著作用。2024年前8月国内汽车产量同比增3%、新能车产量增31%。据平安证券汽车团队2024年中期策略,预计2024年汽车销量同比增长4.7%至3150万台,新能车销量同比增21%至1150万台。总体看2024年新能车产销延续高增,叠加单车玻纤用量稳步增长,带动交运领域玻纤需求


向好。 ◆ 玻纤在轨道交通领域应用示例

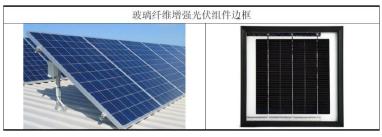
◆ 2015-2022年国内轨道交通装备市场规模

◆ 2024年前8月国内新能车产量同比增31% (产量为左轴、同比为左轴)

资料来源:国际复材招股书,中商产业研究院,Wind,平安证券研究所


2.4 汽车/风电/出口/电子领域需求尚可,光伏等新市场仍在培育中

- ▶ 上半年玻纤及制品出口增长14%, 较2023年明显回暖。上半年受益于欧美补库存需求释放、叠加欧美制造业PMI景气度。 回升的拉动, 我国玻璃纤维及制品出口105万吨, 同比升14.5%, 与一季度相比提高2.4pct; 出口金额14亿美元, 同比升 2.8%。往后看,考虑全球经济下行压力有所加大、美国大选走势不明朗、国际货运价格上涨等,玻纤外贸出口市场存在 不确定性因素。当然, 国内玻纤低价导致企业盈利弱、"抢出口"效应或是后续玻纤出口的支撑因素。
- ▶ 光伏边框带来的玻纤需求增量值得跟踪。光伏边框是光伏组件的辅材,用于固定、密封太阳能电池板组件。铝合金是目 前光伏边框首选材料,但光伏边框和支架正从传统的金属材料慢慢转向复合材料。近年来开发出的玻璃纤维增强聚氨酯 复合材料边框,拥有轻质高强、抗PID(潜在电势诱导衰减)、耐老化、腐蚀和盐雾、耐高低温、高背压承载能力等性 能,不仅可延长光伏组件使用寿命,也可为组件制造商降本增效。根据中国玻纤工业协会数据,上半年在光伏边框环节 已有超10GW的光伏组件市场规模形成。


中国:出口金额:玻璃纤维(包括玻璃棉)及其制品(例如,玻璃纤 维纱线及其织物)(7019):当月同比

2024年中国玻纤出口重回增长(单位 %) ◆ 2023-2024H1我国玻纤及制品月度出口量(万 吨)

◆ 玻璃纤维增强光伏组件边框示例图

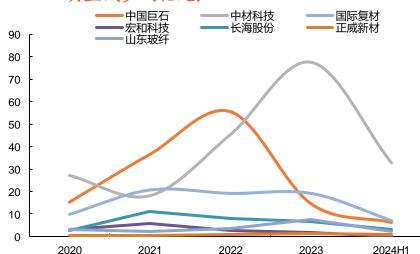
2.4 汽车/风电/出口/电子领域需求尚可,光伏等新市场仍在培育中

- ▶ 电子级玻璃纤维布是由电子级玻璃纤维纱织造而成,通称"电子布",浸上由不同树脂组成的胶粘剂可制成覆铜板 (CCL),而覆铜板是印制电路板(PCB)的专用基本材料。印制电路板作为电子元器件的支撑载体,广泛应用于智能手机、平板、笔记本电脑、服务器、5G基站、汽车、消费类电子产品、工业控制等高科技电子产品中。
- ➤ 据Prismark统计,手机为PCB最大应用下游,2022年全球产值达160亿美元,其次为PC(127亿美元)与服务器(99亿美元)。随着AI产业高速发展,服务器、手机等领域有望充分受益。Prismark预计,全球2024年PCB产值有望同比+5%至729.7亿美元,2028年有望增长至904亿美元;其中,中国2024年PCB产值有望同比+4%至393亿美元,2028年有望增长至462亿美元。


◆ 2023-2028年全球PCB产值情况

◆ 2023-2028年中国PCB产值情况

◆ 电子布产业链示例图



资料来源: Prismark, 宏和科技公告, 平安证券研究所

2.5 2024Q2产能投放略有加快,后续或仍有新增产能释放

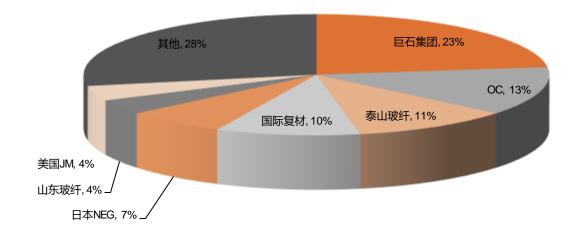
- ▶ 随着玻纤价格与盈利大幅回落,2022年以来玻纤行业资本开支减少、产能投放明显放缓,行业储备产线投产时间滞后。据卓创资讯统计,2023年全年玻纤在产产能增加23万吨,低于2022年(增加42万吨)。进入2024年,前八月玻纤在产产能增加约34万吨,二季度行业复价后产能建设呈现加快趋势。其中,中国巨石淮安2条年产各10万吨的产线分别于5月和7月点火,长海股份15万吨产线于9月点火。
- ▶ 展望2024H2与2025年,玻纤行业或仍有新增产能释放,规模取决于价格走势。其中,电子纱近两年产能基本平稳, 2024H2新增产能压力小于粗纱,供需格局更具韧性。

◆ 2024年玻纤企业购置固定资产的现金支出 明显减少(亿元)

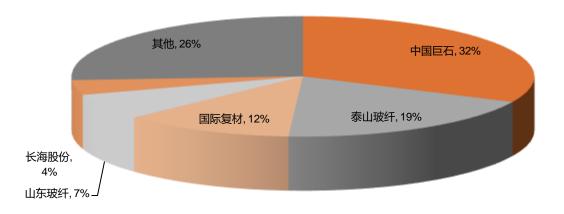
◆ 2024M1-8玻纤在产产能增加约34万吨

◆ 2023年以来电子纱在产产能基本稳定

资料来源: Wind, 卓创资讯, 平安证券研究所



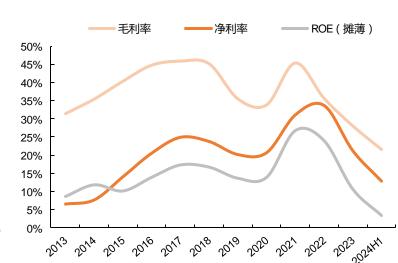
- 一、玻纤为增强替代型材料,下游应用领域广
- 二、供需格局呈边际改善, 玻纤价格底部回升
- 三、行业集中度高,龙头成本技术等优势突出
- 四、投资建议与风险提示


3.1 全球玻纤产业集中度高, 竞争格局相对良好

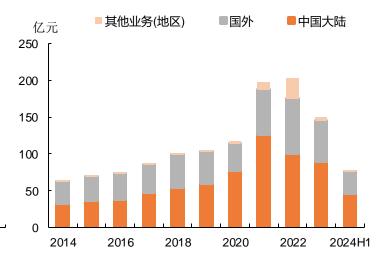
▶ 全球七家头部玻纤企业产能占全球产能七成,国内三家头部玻纤企业产能占国内产能超六成。因玻纤行业资金、技术门槛较高,全球与中国的玻纤产业均呈现高集中度特点。据Wind、星智研究统计,2020年中国巨石、OC、泰山玻纤、国际复材、日本NEG、山东玻纤、美国JM这七家公司玻纤产能合计占全球产能72%,其中国内企业中国巨石、泰山玻纤、国际复材的产能占全球产能44%;从国内格局看,2022年中国巨石、泰山玻纤、国际复材合计产能约占全国产能的63%,加上山东玻纤、长海股份的话,五家企业产能占全国产能74%。

◆ 2020年全球玻璃纤维企业产能格局

◆ 2022年国内玻璃纤维企业产能格局


3.2 中国巨石:全球玻纤产业龙头,综合实力领先

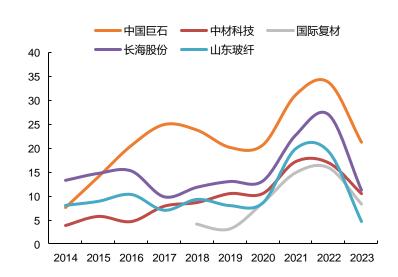
- ▶ 中国巨石主要从事玻璃纤维及制品的生产销售,据公司2024年中报,公司产能规模全球第一,2024H1公司实现粗纱及制品销量152万吨,电子布销量4.58亿米,玻纤及其制品合计营收76亿元,占主营收入99.89%。
- ▶ 央企背景: 截至2024年中报,第一大股东为中国建材股份(持股26.97%),其次为创始人张毓强实控的振石集团(15.59%)。
- ▶ 海外收入占比接近40%,通过全球化布局减少国际贸易摩擦冲击。据官网披露,公司拥有浙江桐乡、江西九江、四川成都、江苏淮安(在建)、埃及苏伊士、美国南卡六大生产基地,已建成玻璃纤维大型池窑拉丝生产线20多条,玻纤纱年产能达260万吨。公司设立巨石美国、加拿大、南非、法国、意大利、等十多家海外销售公司,2024H1国外收入占比39%。


◆ 中国巨石历年收入利润

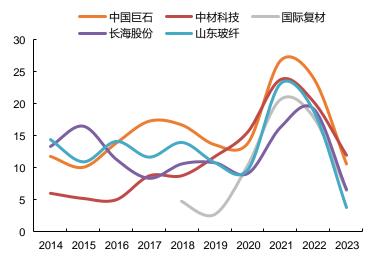
营收(亿元) 归母净利润(亿元) 200% 150% 150% 150% 100% 50% 0% 20¹ 20

◆ 中国巨石历年利润率走势

◆ 中国巨石分区域收入情况


3.2 中国巨石:全球玻纤产业龙头,综合实力领先

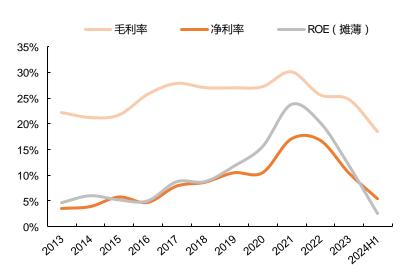
- ▶ 中国巨石利润率长期行业领先。从净利率看,剔除相对较高的2021-2022年,过去十年中国巨石平均净利率19%,明显高于中材科技(8%)、国际复材(6%,2014-2017年数据空缺、下同)、长海股份(13%)、山东玻纤(8%)。从摊薄ROE看,同样剔除21-22年,过去十年中国巨石平均净利率13%,明显高于中材科技(9%)、国际复材(6%)、长海股份(11%)、山东玻纤(11%)。
- ▶ 利润率领先得益于成本控制(背后是规模化、区域布局、控股原料商、设备先进等优势)以及产品结构优(背后是客户资源、技术与产品实力): 1)区域布局带来的低成本优势,得益于桐乡等基地叶腊石资源丰富、成都基地能源成本低等; 2)控股原料商、规模领先、区域布局带来的原材料与天然气采购成本优势; 3)产线大型化、设备先进带来的能耗优势; 4)产能利用率高带来的折旧摊销优势; 5)中高端产品占比高、品牌价值带来的高价格与高附加值优势。据公司2020年年报,公司已经在玻璃配方、大型玻纤池窑和绿色制造三大技术领域,公司拥有世界一流核心自主知识产权,具有全套技术输出能力,居世界领先水平。


中国巨石历年玻纤销量

粗纱及制品销量(万吨) 电子布销量(亿米,右) 250 250 150 150 100 2020 2021 2022 2023 2024H1

◆ 玻纤企业净利率对比(单位%)

◆ 玻纤企业摊薄ROE对比(单位 %)


3.3 中材科技:三大产业齐头并进,泰山玻纤具备规模与客户等优势

- ▶ 中材科技以"做强叶片、做优玻纤、做大锂膜"的产业发展思路,集中资源大力发展风电叶片、玻璃纤维及制品、锂电池隔膜三大主导产业,同时从事高压复合气瓶、膜材料及其他复合材料制品的研发、制造及销售。据公司公告,2024H1营收结构中特种纤维复合材料制品、风电叶片、特种纤维复合材料技术与装备、锂电池隔膜分别占55%、27%、8%、7%。
- ▶ 央企背景: 截至2024年中报,中材科技第一大股东为中国建材股份(持股60.24%)。
- ▶ 2016年中材科技购买中材股份持有的泰山玻纤 100%股权,随后持续扩大玻纤产能规模。目前全资子公司泰山玻纤拥有泰安总部、邹城公司、淄博公司三大生产基地,2024年中报披露玻纤年产能达140万吨,是全球前三大玻纤企业。2024H1玻璃纤维及制品产量64.7万吨,销量68.1万吨,销售收入38.5亿元,其中出口销售收入占比24%。


◆ 中材科技历年收入利润

营收(亿元) 归母净利润(亿元) 营收同比(右) 利润同比(右) 295 120% 100% 245 80% 60% 195 40% 145 20% 0% 95 -20% -40% 45 -60%

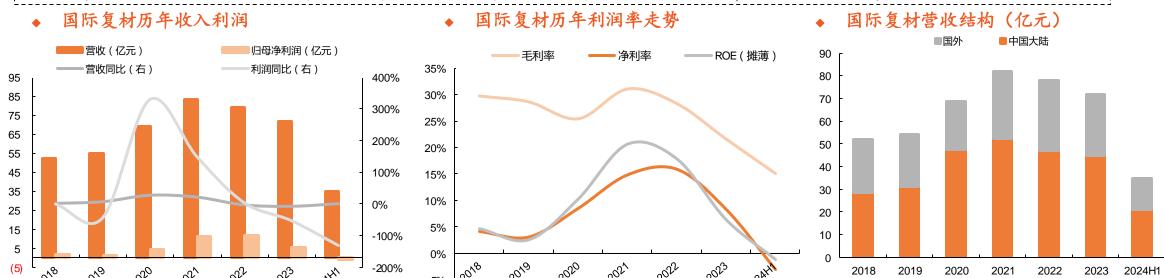
◆ 中材科技历年利润率走势

◆ 中材科技收入结构(单位 亿元)

3.3 中材科技:三大产业齐头并进,泰山玻纤具备规模与客户等优势

- ➤ 玻纤产品以中高端为主,且与风电叶片业务协同度高。从泰山玻纤下游需求分布来看,据中材科技公司公告,新能源、交通运输、电子电器等新兴战略领域销售占比2019年就已提升至70%左右,尤其是风电客户优势显著。风电叶片主要原材料为玻璃纤维和环氧树脂,而中材科技控股子公司中材叶片是专业的风电叶片设计、研发、制造和服务提供商,拥有江苏阜宁、甘肃酒泉、江苏连云港、广东阳江等13个国内生产基地及1个位于巴西的国外生产基地。据中材科技公司公告,2024H1中材叶片合计销售风电叶片7.52GW,同比下降21.6%,实现风电叶片销售收入28.3亿元。根据可再生能源咨询研究机构BM的研究,中材叶片2023年全球风电叶片制造商市场占有率高达26%(含中复连众)。
- ▶ 从毛利率角度看,据中材科技公司公告,2024H1中材科技的特种纤维复合材料制品、风电叶片、特种纤维复合材料技术与装备、锂电池隔膜毛利率分别为20.6%、15.5%、5.6%、12.2%,其中玻纤制品毛利率在行业低谷期仍处相对较高水平、与中国巨石毛利率差异不大,或与规模化优势、高端产品占比高等有关。

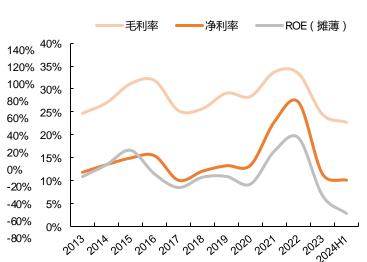
◆ 中材科技历年玻纤销量(万吨)


■中材科技:产量:玻璃纤维及制品

◆ 中材科技历年风电叶片与锂电池隔膜销量

3.4 国际复材:风电/电子等领域领军企业,23年底IPO募资扩充产能

- ▶ 国际复材自1986年重庆市玻纤厂从日本引入直接熔融法玻璃纤维生产线起,已在玻纤领域深耕30来年。2020年公司玻纤产能占全球产能10%,位居全球前四;占国内产能的12%(2022年),位居国内前三。据公司公告,2023年公司玻纤及制品营收占总营收比重为96%,其中玻纤纱60%、玻纤布36%。
- ➤ 据公司招股书,公司在风电叶片领域已成为全球最主要的风电纱及织物供应商之一,市场占有率超过25%,其中高模、超高模产品产量居全球领先地位。在高端电子领域,公司低介电电子细纱、超细纱性能优异,产品技术含量和质量均处于行业领先地位。在热固领域,公司高端绝缘纱、高模量光缆阻水纤维用纱等多类产品性能优异,市场份额居行业领先地位。不过,由于国内生产基地主要位于重庆市,距离玻纤需求量大的华东、华南地区相对较远,区位上的劣势一定程度削弱了盈利水平。
- ▶ 国企背景:截至2024年中报,公司第一大股东为云南国资委控股的云天化集团(持股60.01%)。另据公司公告, 2023年12月公司IPO上市,募集资金18.6亿元,将投资于年产15万吨ECT玻璃纤维智能制造生产线项目、F10B年产11万吨玻璃纤维智能制造冷修技改项目、高性能电子级玻璃纤维产品改造升级技术改造项目,以及补充流动资金。


3.5 长海股份:民企背景、拥有完整玻纤产业链,在建产能规模庞大

- ▶ 长海股份主营业务为玻璃纤维及其玻纤制品、玻纤复合材料的研发、生产和销售,拥有从玻纤生产、玻纤制品深加工到玻纤复合材料制造的完整产业链,而完备的产业链体系或是公司利润率处于行业前列的一个重要原因。据公司公告,长海股份产品畅销全国30多个省市,并远销北美、南美、欧洲、中东、东南亚、大洋洲、非洲等30多个国家和地区。
- ▶ 民企背景: 截至2024年中报,公司实控人为杨鹏威(持股41.71%)与杨国文(持股10.57%)。
- 》 现有产能29万吨, 拟投资建设60万吨项目, 潜在新增产能高。据公司公告, 2023年公司玻纤及制品产能29万吨、产量27万吨、产销率近101%。2021年公司公告拟投资建设60万吨高性能玻璃纤维智能制造基地项目,总投资63.5亿元:固定资产投资59.7亿元。据2024年中报,截至2024/6/30,项目一期之第一条15万吨生产线已完工90%。

长海股份历年收入利润

长海股份历年利润率走势

长海股份收入结构(亿元)

长海股份收入结构(亿

- 一、玻纤为增强替代型材料,下游应用领域广
- 二、供需格局呈边际改善, 玻纤价格底部回升
- 三、行业集中度高, 龙头成本技术等优势突出
- 四、投资建议与风险提示

投资要点

• 投资建议: 玻纤行业过去两年景气度下行、价格大幅下滑, 行业盈利亏损严重。随着头部企业积极调整策略, 叠加供 需格局有所改善, 二季度以来玻纤价格明显回升, 有望带动下半年玻纤企业业绩同比逐步改善。后续玻纤能否继续涨 价取决于供需关系, 但行业高集中度叠加头部企业稳价意愿强烈, 玻纤尤其电子纱价格不宜悲观。建议关注具备成本、技术、客户等优势, 且产能份额持续扩张的头部玻纤企业, 如中国巨石、长海股份、中材科技、国际复材。

● 重点公司盈利预测(注:以下公司盈利预测来自Wind一致预测(180天))

股票名称	股票代码	市值(亿元) 2024-9-19	归母净利润(亿元)				PE(倍)				评级
			2023A	2024E	2025E	2026E	2023A	2024E	2025E	2026E	
中国巨石	600176.SH	373	30.4	24.3	31.2	38.2	12.3	15.4	12.0	9.8	暂无评级
长海股份	300196.SZ	40	3.0	3.0	4.3	5.7	13.4	13.2	9.4	7.0	暂无评级
中材科技	002080.SZ	163	22.2	17.1	21.0	26.5	7.3	9.5	7.7	6.1	暂无评级

风险提示

- 玻纤行业供需改善不及预期的风险: 五月以来玻纤企业库存重新回升, 若后续终端需求表现不及预期(包括光伏边框等新领域拓展具备较大不确定性), 或是中下游补库意愿弱, 或是玻纤产能快速扩充, 将导致行业供需关系走弱, 加大玻纤价格压力。
- 原材料及能源价格上涨的风险:能源、材料占玻纤成本比重高,受行业供需及国际市场影响,天然气、电力、原材料等存在价格上涨可能。如未来成本端出现大幅涨价,而玻纤企业未能相应提高产品售价,将导致毛利率受到负面影响。
- 国际贸易摩擦加大的风险: 巨石等玻纤企业近年积极加大海外布局,海外收入占比不低。而欧盟、美国等境外国家出于贸易保护主义,对原产于中国境内的玻纤及其制品征收反倾销税、反补贴税,亦或采取其他贸易保护措施。若未来境外国家或地区加大贸易保护措施,将会削弱国内玻纤企业在境外的竞争优势,对企业经营业绩造成不利影响。

平安证券综合研究所投资评级:

股票投资评级:

强烈推荐(预计6个月内,股价表现强于市场表现20%以上) 推荐(预计6个月内,股价表现强于市场表现10%至20%之间) 中性(预计6个月内,股价表现相对市场表现在±10%之间) 回避(预计6个月内,股价表现弱于市场表现10%以上)

行业投资评级:

强于大市(预计6个月内,行业指数表现强于市场表现5%以上) 中性(预计6个月内,行业指数表现相对市场表现在±5%之间) 弱于大市(预计6个月内,行业指数表现弱于市场表现5%以上)

公司声明及风险提示:

负责撰写此报告的分析师(一人或多人)就本研究报告确认:本 人具有中国证券业协会授予的证券投资咨询执业资格。

平安证券股份有限公司具备证券投资咨询业务资格。本公司研究 报告是针对与公司签署服务协议的签约客户的专属研究产品,为 该类客户进行投资决策时提供辅助和参考, 双方对权利与义务均 有严格约定。本公司研究报告仅提供给上述特定客户, 并不面向 公众发布。未经书面授权刊载或者转发的, 本公司将采取维权措 施追究其侵权责任。

证券市场是一个风险无时不在的市场。您在进行证券交易时存在 赢利的可能, 也存在亏损的风险。请您务必对此有清醒的认识, 认真考虑是否进行证券交易。

市场有风险,投资需谨慎。

免责条款:

此报告旨为发给平安证券股份有限公司(以下简称"平安证券") 的特定客户及其他专业人士。未经平安证券事先书面明文批准. 不得更改或以任何方式传送、复印或派发此报告的材料、内容及 其复印本予任何其他人。

此报告所载资料的来源及观点的出处皆被平安证券认为可靠,但 平安证券不能担保其准确性或完整性, 报告中的信息或所表达观 点不构成所述证券买卖的出价或询价, 报告内容仅供参考。平安 证券不对因使用此报告的材料而引致的损失而负上任何责任,除 非法律法规有明确规定。客户并不能仅依靠此报告而取代行使独 立判断。

平安证券可发出其它与本报告所载资料不一致及有不同结论的报 告。本报告及该等报告反映编写分析员的不同设想、见解及分析 方法。报告所载资料、意见及推测仅反映分析员于发出此报告日 期当日的判断,可随时更改。此报告所指的证券价格、价值及收 入可跌可升。为免生疑问, 此报告所载观点并不代表平安证券的 立场。

平安证券在法律许可的情况下可能参与此报告所提及的发行商的 投资银行业务或投资其发行的证券。

平安证券股份有限公司2024版权所有。保留一切权利。